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DISSERTATION

zur Erlangung des akademischen Grades
Doctor rerum naturalium

an der Fakultät Bauingenieurwesen
der

Bauhaus-Universität Weimar

vorgelegt von

Dmitrii Legatiuk

geboren am 01.05.1988 in Tula, Russland

Gutachter:
1. Prof. Dr. rer. nat. habil. Klaus Gürlebeck

2. Prof. Maria Irene Almeida Falcão
3. Prof. Dr. Wolfgang Sprößig
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The miracle of the appropriateness of the language of mathematics
for the formulation of the laws of physics is a wonderful gift which
we neither understand nor deserve. We should be grateful for it
and hope that it will remain valid in future research and that it will
extend, for better or for worse, to our pleasure, even though perhaps
also to our bafflement, to wide branches of learning.

Eugene Wigner
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Zusammenfassung

In der Praxis muss man sich häufig mit Problemen befassen, die verschiedene Arten
von Singularitäten (z.B. Risse, Lücken etc.) beinhalten. Um diese Probleme mit nu-
merischen Methoden zu bearbeiten, ist es notwendig, einige Anpassungen in der Nähe der
Singularität vorzunehmen. Die bekannteste numerische Methode ist die Finite-Elemente-
Methode, welche es erlaubt, eine Näherungslösung für singuläre Probleme mit Hilfe von
Netzverfeinerungen zu konstruieren.

Eine Alternative zu den numerischen Methoden sind die funktionentheoretischen Meth-
oden, welche die Konstruktion einer exakten Lösung eines Randwertproblems mit einer
Singularität erlauben. Aufgrund der Tatsache, dass diese Methoden auf einige kanonische
Gebiete beschränkt sind, ist deren tatsächliche Anwendung sehr begrenzt.

Die Idee dieser Doktorarbeit ist es, eine Methode zu entwickeln, die die Vorteile sowohl
der FEM, als auch der funktionentheoretischen Methoden in einem einzigen Verfahren
miteinander kombiniert. Diese Verbindung wird durch das Konstruieren einer exakten
Lösung einer Differentialgleichung in einem kleinen Gebiet nahe der Singularität und
durch die Kopplung dieser analytischen Lösung mit der Finite-Elemente-Lösung in dem
verbleibenden Teil des Gebietes realisiert.

Diese Arbeit zeigt einen Weg auf, wie man eine stetige Kopplung zwischen den beiden
Lösungen konstruiert. Die Stetigkeit ist durch einen speziellen Interpolationsoperator
gesichert, der auf dem Interface zwischen den beiden Lösungen definiert wird.

Die eindeutige Lösbarkeit des dazugehörigen Interpolationsproblems ist in dieser Ar-
beit bewiesen. Erste Schritte der Konvergenzanalyse und der Fehlerabschätzung wer-
den durchgeführt und bewiesen. Verschiedene numerische Beispiele einschließlich eines
tatsächlichen Beispiels aus der Ingenieurpraxis werden vorgestellt. Diese Arbeit lässt
erkennen, dass eine solche Kopplungsmethode das Potential besitzt, ein nützliches In-
strument für praktische Anwendungen zu werden. Insbesondere die Arbeit mit der ana-
lytischen Lösung nahe der Singularität lässt eine bessere lokale Konvergenzrate in dieser
Region erwarten.

ii



Abstract

Often in practice one has to deal with problems containing different types of singularities
(crack, gaps, etc.). To handle such problems by numerical methods one needs to perform
some adaptations in the region near the singularity. The finite element method is the most
popular numerical method among the others, which allows to construct an approximate
solution for singular problems after a certain level of refinement.

An alternative to numerical methods are the function theoretic methods, which allow
to construct an exact solution to a boundary value problem with a singularity. But
due to the fact that these methods are restricted to some canonical domains, their real
applications are rather limited.

The idea of this thesis is to propose a method which can combine the advantages of the
FEM and the function theoretic methods in one procedure. This combination is realised
by constructing an exact solution to a differential equation in the small region near a
singularity and by coupling this analytical solution with the finite element solution in the
remaining part of a domain.

This thesis shows a way how to construct a continuous coupling between two solutions.
The continuity is ensured by a special interpolation operator, which is constructed on
the interface between the two solutions. The unique solvability of the corresponding
interpolation problem is proved in this thesis. First steps in the convergence analysis and
the error estimation are performed and proved. Several numerical examples including a
realistic example of the engineering practice are presented. This work indicates that such
a method of coupling has a potential to become a useful tool in practical applications.
The idea is that by working with the analytical solution near the singularity one can
expect a better convergence rate in this region.
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Chapter 1

Introduction

During the modelling of different physical phenomena in engineering practice we often have
to deal with problems containing different types of singularities: cracks, gaps, interfaces
between different materials, geometric irregularities, singular boundary conditions, etc.
Such problems typically require more sophisticated techniques to construct a solution
which will describe the singularity correctly. These techniques will vary depending on the
considered problem, and therefore at the present moment it is not possible to construct
a general method which will cover all possible cases. For that reason this thesis deals
with the linear elastic fracture mechanics on the macro scale, i.e. with the corresponding
boundary value problem with a singularity coming from a crack tip.

The fracture mechanics considers bodies with cracks and inclusions, and one of the
main interests is the description of the behaviour of mechanical parameters (displace-
ments, strains, stresses, etc.) in the region near these irregularities. One of the first
works in that direction was done by Westergaard in [Westergaard 1939], where he has
shown an influence of a crack on the stress distribution in an infinite body. With de-
veloping of new technologies and new materials the study of fracture became more and
more important task in research and in engineering practice. A huge amount of works
has been published in this field, for an overview we refer to some classical works, like
[Anderson 2005, Broek 1984, Liebowitz 1968] and the references therein. The book of
Liebowitz [Liebowitz 1968] is of particular importance, because in that book the crucial
role of the complex function theory in the construction of analytical solutions was shown.
Even Westergaard has constructed the analytical solution for an infinite plane with a crack
by the help of the complex-valued functions. But only in [Liebowitz 1968] the significance
of the complex function theory was shown in all its majesty.

Another crucial work in the direction of applications of the complex function theory
is related to the name of Kolosov, and to the name of his student Muskhelishvili. In
his doctoral thesis Kolosov [Kolosov 1909] has introduced a representation of a general
solution to a problem of plane elasticity in terms of two independent analytic functions
of one complex variable z. Later on Muskhelishvili in his book [Mußchelischwili 1971],
has given a strong mathematical foundation for the proposed method of solution. He
has developed ideas not only for the method introduced by Kolosov, but he has shown a
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remarkable series of examples for applications of classical tools from the complex function
theory, such as Cauchy integral formula and conformal mappings.

The analytical solution based on the complex function theory gives us a high accuracy
of the solution in the neighbourhood of the singularity. Because of using exact solutions of
the partial differential equations all details of the mathematical model are preserved. The
disadvantage of the complex analytic approach is that the full linear elastic boundary
value problem can be solved explicitly only for some elementary (simple) or canonical
domains. By that reason the alternative to analytical methods – numerical methods,
become a very popular tool for practical calculation.

The finite element method is the most popular numerical method which is used for
solving practical problems in different fields of engineering. But to deal with problems
which contain a singularity one has to make some adaptations and improvements to
get an acceptable result. For instance, in the case of mesh-based methods one has to
perform an additional refinement in the region near the singularity. Another approach
is to introduce a special singular element, see for example [Zienkiewicz & Taylor 2000],
where a set of basis functions is enriched by functions which show correct asymptotic
behaviour near the singularity. The extended finite element method is based on that idea
[Fleming et al. 1997]. In the recent years a lot of possible adaptations of the finite element
method were studied. Among the others the Extended and Generalized Finite Element
methods are the most popular at the moment, an extensive review on these methods can
be found in [Belytschko et al. 2009].

These modern computational methods give us a lot flexibility in the modelling of
fracture and in solving singular problems. But they are also not free of disadvantages:

(i) the functions which are used to enrich the standard finite element basis are based
on some well-known analytical solutions from the fracture mechanics for canonical
domains, like for example, a crack in an infinite plane. But in a bounded domain one
has to take into account boundary conditions which will influence the behaviour of
the analytical solution near the singularity. By the construction the well-known an-
alytical solutions for infinite bodies cannot represent this influence of the boundary
conditions;

(ii) by using in a certain region the enrichment function we typically loose the continuity
between the enriched elements and the standard elements. This problem was solved
by introducing a new version of the FEM, the Generalized Finite Element Method
[Melenk 1995], an overview of this method can be found in [Babuška et al. 2004];

(iii) the third disadvantage is that the constructed solution near the singularity is not
an exact solution to the differential equation in that region. This disadvantage
can be crucial if one is interested in more detailed analysis of the fracture process
and wants to calculate some physical quantities (for example, strain energy, stress
intensity factors, etc.). Because from the fracture mechanics it is known, that these
quantities can be easily calculated exactly if the solution is an analytic function.
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But in the case of the finite element approximation a solution is never an analytical
function, and therefore all these physical quantities can be only approximated.

Another point of view on the problem is to try to construct a coupled method: to use
the analytical solution in a small region near the singularity and couple it with the finite
element solution in the remaining part of a domain. The first attempt in the direction
of a coupling of the complex function theory and the finite element method was done by
Piltner in his PhD thesis [Piltner 1982]. The idea of Piltner was to introduce a special
finite element containing a crack or a hole. The solution inside of this special element is
constructed by the complex function theory, and a coupling with standard finite elements
is realised via nodes on the boundary of the special element. This approach was further
developed in his works [Piltner 1985, Piltner 2003, Piltner 2008].

Piltner has shown promising results obtained by his method, but a continuous coupling
between two solutions was still missing. Because the solution between two nodes was
assumed to be a piecewise linear or a piecewise quadratic function, which is not true for
the analytical solution based on holomorphic functions. Therefore a global solution has
jumps passing this boundary, and from the point of view of quality this is not completely
satisfying to improve the approximation of a point singularity (zero-dimensional) of the
displacement field and as a result the displacement field has a one-dimensional jump.

To overcome the problem of a discontinuous coupling between the two solutions we
introduce a method of coupling in this thesis. The main goal of this approach is to obtain
a global continuity for the displacement field in the whole domain. To get the desired
continuity we introduce a new type of finite elements, the so-called coupling elements,
which are based on the special interpolation operator. In the works of Piltner the coupled
method was realised based on a variational formulation in the whole domain. But in
the proposed method we construct the shape functions in the special element based on
a strong solution of a differential equation in the field near the singularity. In this case
these shape functions for the finite element approximation satisfy the differential equation
in the special element.

Another goal of the proposed method is to use the classical version of the finite element
method. This goal is related to the simplicity of the method, that one can use the most
canonical form of the FEM and one can obtain anyway a continuous coupling. This
approach is different to the GFEM, which requires more sophisticated technique for the
numerical integration. Another difference to the GFEM is that in the proposed method
the special functions (analytic functions) are not simply multiplied with the vertex “hat”
functions, but are used in the constructions of the finite element shape functions. By this
construction the shape functions satisfy the differential equation in the region near the
singularity.

Another reason for the classical FEM is a very fundamental mathematical basis which
was developed in [Ciarlet 1978, Ciarlet & Raviart 1971]. Because our main goal is not
only to show a few numerical examples for test problems, but to construct a theory for
the proposed method of coupling. Particular interest is to obtain the error estimate for
the coupling, which can be considered as a measure of a quality for the coupling.
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According to these goals this thesis is organised as follows. Chapter 2 gives an in-
troduction to the linear elasticity theory. The last section of this chapter is devoted to
discussion of boundary value problems in nonsmooth domains and the regularity of the
exact solution in this case.

Chapter 3 introduces the complex and the hypercomplex function theory, and their
application to boundary value problems of the linear elasticity. The analytical solution
to a crack tip problem is constructed in this chapter.

Chapter 4 shows a way how to get the desired coupling. One of the most important
results here is the main interpolation theorem, which is proved for an arbitrary node
distribution. To make the method more applicable the possible strategy for a refinement
is discussed here. Finally the construction of the shape function is illustrated.

Chapter 5 presents the most fundamental results of the thesis in the direction of
the error estimation and convergence analysis of the proposed method. Two different
strategies for convergence analysis are proposed and proved in this chapter. An alternative
proof of the main interpolation theory is also shown in this chapter. Finally the coupling
error is estimated here.

Chapter 6 shows several numerical examples, which serve to study possible ways for
improvements of the proposed method. In this chapter two examples are considered: a
test example with the known exact solution, and a realistic example of a full-size concrete
hinge. The obtained results show the potential of the proposed scheme.

In the final Chapter 7 a summary of the work presented is given, conclusions are drawn
and possible ways of the future research are provided.
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Chapter 2

Fundamentals of linear elasticity
theory

The goal of this chapter is to introduce fundamentals of linear elasticity theory. Basic
concepts and equations of a continuum mechanics will be introduced with restriction
to linear elastic isotropic bodies. We will show a general statement of boundary value
problems, which can be formulated in linear elasticity. In the framework of this thesis we
will consider boundary value problems in a plane and also in a three dimensional case. For
that reason we will formulate everything for spatial elasticity theory, and in the following
chapters about plane problems some formulae can be repeated if necessary. The general
theory of continuum mechanics can be found in many books, like for instance, in the
classical Russian book of [Ilyushin 1971]. The content of this chapter is based on ideas
from [Ilyushin 1971, Lurie 1965, Mußchelischwili 1971].

2.1 Main ideas of continuum mechanics

Continuum mechanics considers bodies of such size, that their small parts dV will contain
a sufficiently large number of particles. Therefore for these small parts one can intro-
duce definitions of macroscopic quantities like density of body, displacements, velocities,
accelerations, outer forces, internal energy and others in sense of mean values. The fact
that all mean values are considered as true values is the idealisation of a real physical
body in the continuum mechanics. Quantity and mathematical nature of the introduced
mean values must be sufficient to describe an internal state of a body and an interaction
between bodies. Continuum mechanics considers mainly mechanical and thermal interac-
tions and deformations of small volumes, but when, a so-called, the multi-field problem is
formulated then influences of electromagnetic fields, chemical reaction, etc. are also taken
into account.

To describe physical states and processes the continuum mechanics uses the three-
dimensional Euclidean space with different coordinate systems and the classical time.
Physical processes must be independent on the choice of a coordinate system. According to
that, mathematical objects which characterise the physical processes must be independent
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on the particular choice of the coordinate system, and physical laws must be described
by these objects through mathematical relations, which are invariant under coordinate
transform.

The main mathematical objects in the continuum mechanics are tensors of different
orders: zeroth order – scalars (density, energy, etc.), first order – vectors (radius vector,
heat flow, velocity etc.), second order (strain tensor, stress tensor, etc.). All of these
tensors are considered to be continuously differentiable with respect to coordinates and to
time, and therefore they are bounded with their derivatives in the volume of a body. The
physical state of an elastic body can be described by the following physical quantities:
forces acting on the continuum, displacements, and strains. These physical quantities
are related by a coupled system of partial differential equations: equations of motion,
constitutive equations and kinematic equations, which form the system of equations of
the linear elasticity.

A material continuum which was originally in equilibrium and occupied a volume v
with a surface o reaches a new equilibrium state whose volume and surface are denoted
by V and O respectively. The first state is referred to as the initial state (volume v),
whilst the second state is called the final state (volume V ). We will use these notations
throughout this chapter.

2.2 Stresses and outer forces

Let us consider a continuum in its final state. The forces acting on the continuum can be
classified as external or internal forces. External forces represent actions on the continuum
particles by bodies which are not included in the considered volume V . The external forces
may be surface forces (a pressure for instance) and/or volume forces (the gravity force).
The force which acts on each particle of the continuum is called a mass force. The mass
force which is acting on the mass contained in the volume dV is called the volume force.

Consideration of the equilibrium of a continuum is based upon two statements:

(i) when the whole continuum is in equilibrium, then any arbitrary part of this contin-
uum is also in equilibrium (the free-body principle);

(ii) the equilibrium conditions for a rigid body are the necessary conditions of equilib-
rium of the considered part of the continuum (the principle of solidification).

Let us mentally divide the volume V into two volumes V1 and V2. Let O′ denote
the surface separating the two volumes and O1 denotes the part of O which bounds the
volume V1. In addition to the external forces acting on the continuum in volume V1 we
should consider the reaction forces of the continuum in volume V2 on volume V1. If we do
not include the latter forces, then the necessary conditions of equilibrium of the external
forces, which are mass forces in V1 and surface forces on O1, are, in general, not satisfied.
These forces should be equilibrated by the forces and moments of the interaction forces
distributed over the separating surface O′. It is assumed that the distribution of these
forces over the surface dO of the surface O′ is statically equivalent to the force σndO,
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the orientation of the surface dO being prescribed by a unit normal vector n directed
outwards from V1, see Fig. 2.1.

dO

ndO σndO

O′

V1

V2

O1

O2

1
Figure 2.1: Elementary volume of a medium

Therefore, for any oriented surface n dO at any location in the continuum, there exists
a force σndO (a vector) which is the force exerted on n dO by the part “above” this
surface. By virtue of the principle of action and reaction we have

σ−ndO = −σndO.
This interaction of the part of the continuum defines the field of internal forces, or in
other words, the stress field in continuum. Not only the quantitative characteristics of
the stress field vary from point to point, as in scalar fields, but it is also not possible to
indicate a certain direction at any point, as in vector fields. The quantity prescribing
the stress field must determine the vector σndO at any point of the field and for any
oriented surface n dO at this point (or vector σn in terms of vector n). This means that
the physical state referred to as the stress field is determined by a quantity which relates
vector σn to vector n. Adopting a linear relationship between these vectors means that
this quantity is a tensor of the second rank. This tensor is referred to as the stress tensor
and denoted as σ̃ whilst its components in a Cartesian coordinate system {O;x1x2x3} are
denoted as σij. The vector σn is determined by multiplication from the left of σ̃ by n

σn = n · σ̃. (2.1)

Multiplication from the right of σ̃ by n, i.e. σ̃ · n, would only affect the notation of
components of tensor σ̃.

The coordinate representation of the relationship (2.1) is given by the following form

σn1 = σ11n1 + σ21n2 + σ31n3,
σn2 = σ12n1 + σ22n2 + σ32n3,
σn3 = σ13n1 + σ23n2 + σ33n3.

 (2.2)
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Assuming n = i1, so that n1 = 1, n2 = 0, n3 = 0 yields the vector of force acting
on the unit area with the outward normal i1. Let us refer to this as stress vector σ1.
Its projection onto the axes of system {O;x1x2x3}, i.e. σ11, σ12, σ13 are termed stresses,
where σ11 is called the normal, whilst σ12 and σ13 are called shear stresses. By analogy
we introduce stress vectors σ2 and σ3 on the surfaces whose normals are the unit vectors
of coordinate axes i2 and i3, respectively. In the matrix of components of tensor σ̃σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 ,

the diagonal and non-diagonal elements present respectively normal and shear stresses.
Fig. 2.2 displays an elementary parallelepiped whose edges are parallel to the coordinate
axes and the stresses on its three faces.

x1

x2

x3

σ11

σ12

σ13

σ21

σ22

σ23
σ31

σ32

σ33

1
Figure 2.2: An elementary parallelepiped and the stresses on its faces

Let us consider an arbitrary volume V∗ bounded by a surface O∗. It is assumed that
V∗ lies completely within a volume V , and O∗ has no common points with a surface
O. The surface forces distributed over O∗ which are internal for V and external for V∗
are caused by the stress state described by the tensor σ̃. They are given by the basic
relationship (2.1) in which n denotes the unit vector of the external normal to O∗.

There are two groups of necessary conditions of equilibrium, namely equations of equi-
librium in the volume V and those on the surface O. The equations of equilibrium in the
volume express the condition of vanishing principal vector and the principal moment of the
mass and surface forces in an arbitrary volume V∗ within volume V . By expressing these
conditions we finally obtain the equation (for all of the details we refer to [Lurie 1965])

div σ̃ + ρK = 0, (2.3)
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where ρK is a volume force. This is the first equation of equilibrium for a continuum.
The second equation of equilibrium is the symmetry of tensor σ̃

σ̃ = σ̃T. (2.4)

Equilibrium equations for a continuum, eqs. (2.3) and (2.4), are written here in an in-
variant form. In Cartesian coordinates these equations have the form of three differential
equations of statics of a continuum

∂σ11

∂x1

+
∂σ21

∂x2

+
∂σ31

∂x3

+ ρK1 = 0,

∂σ12

∂x1

+
∂σ22

∂x2

+
∂σ32

∂x3

+ ρK2 = 0,

∂σ13

∂x1

+
∂σ23

∂x2

+
∂σ33

∂x3

+ ρK3 = 0,


(2.5)

and three equations expressing symmetry of the stress tensor

σ23 = σ32, σ31 = σ13, σ12 = σ21. (2.6)

The equilibrium equations (2.5) contain six components of the symmetric stress tensor.
Clearly, equations (2.5) are only necessary conditions for equilibrium, obtaining sufficient
conditions inevitably requires consideration of a physical model of the continuum (elas-
tic solid, viscous fluid etc.). The problem of equilibrium of a continuum is statically
indeterminate.

Equilibrium equations on the surface O bounding the volume V are obtained from the
basic relationship (2.1) where σn is replaced by force F distributed over O

n · σ̃ = F.

Another form of this equality is

n1σ1 + n2σ2 + n3σ3 = F

or
n1σ11 + n2σ21 + n3σ31 = F1,
n1σ12 + n2σ22 + n3σ32 = F2,
n1σ13 + n2σ23 + n3σ33 = F3,


where ns denotes projections of the unit vector n on the coordinate axes.

The principal values of the stress tensor, referred to as principle stresses, are equal to
the roots σ1, σ2, σ3 of its characteristic equation

P3(σ) = |σsk − δskσ| =

∣∣∣∣∣∣
σ11 − σ σ12 σ13

σ21 σ22 − σ σ23

σ31 σ32 σ33 − σ

∣∣∣∣∣∣ = 0.

9



The algebraic invariants of the stress tensor have the following form

I1(σ̃) = σ11 + σ22 + σ33 = σ1 + σ2 + σ3,
I2(σ̃) = σ11σ22 + σ11σ33 + σ22σ33 − σ2

12 − σ2
13 − σ2

23,
I3(σ̃) = det σij = σ1σ2σ3.

2.3 Displacements and strains

Let us consider two infinitesimally close points M and N in a volume v (see Fig. 2.3)

OM = r = isxs, ON = r + dr = is(xs + dxs),

where is denotes the unit basis vectors of the coordinate axes. Their positions M ′ and N ′

x1

x2

x3

r R

u
dr

dRu+ du

M

M ′

N

N ′

O

1

Figure 2.3: Radii vectors of two infinitesimally close points

in volume V are given by the following radii vectors

OM ′ = R = r + u = is(xs + us),

ON ′ = R + dR = r + dr + u + du = is(xs + dxs + us + dus).


Here du represents the vector of the relative displacement of two infinitesimally close
points in the medium. Then we have

du =
du

dr
· dr = (∇u)T · dr = dr · ∇u.

10



The tensor du
d r

, which is the derivative of the vector u with respect to direction r, can be
set as the sum of its symmetric and skew-symmetric parts

du

dr
=

1

2

(
du

dr
+∇u

)
+

1

2

(
du

dr
−∇u

)
= ε̃+ Ω̃. (2.7)

The first component determines a symmetric tensor of second rank which is called the
linear strain tensor

ε̃ =
1

2

(
du

dr
+∇u

)
=

1

2

[
(∇u)T +∇u

]
.

The matrix of the components of this tensor is set in the form

ε11 ε12 =
1

2
γ12 ε =

1

2
γ13

ε21 =
1

2
γ21 ε22 ε23 =

1

2
γ23

ε31 =
1

2
γ31 ε32 =

1

2
γ32 ε33


. (2.8)

The expressions for components εij = εji in terms of the derivatives of the displacement
vector are as follows

ε11 =
∂u1

∂x1

, ε12 =
1

2

(
∂u1

∂x2

+
∂u2

∂x1

)
,

ε22 =
∂u2

∂x2

, ε23 =
1

2

(
∂u2

∂x3

+
∂u3

∂x2

)
,

ε33 =
∂u3

∂x3

, ε31 =
1

2

(
∂u3

∂x1

+
∂u1

∂x3

)
.

(2.9)

In linear elasticity theory the diagonal components of matrix (2.8) relate to extensions,
while the non-diagonal components γij are referred to as shearing strains.

The second term in formula (2.7) is the skew-symmetric tensor of second rank

Ω̃ =
1

2

(
du

dr
−∇u

)
=

1

2

[
(∇u)T −∇u

]
with the following matrix of the components 0 ω12 = −ω3 ω13 = ω2

ω21 = ω3 0 ω23 = −ω1

ω31 = −ω1 ω32 = ω1 0

 .

Here the quantities

ω1 =
1

2

(
∂u3

∂x2

− ∂u2

∂x3

)
, ω2 =

1

2

(
∂u1

∂x3

− ∂u3

∂x1

)
, ω3 =

1

2

(
∂u2

∂x1

− ∂u1

∂x1

)
11



represent the projections of vector ω referred to as the vector of rotation. This vector
accompanies tensor Ω̃.

In the linear elasticity theory the components of tensor ε̃ and the rotation vector ω
are assumed to be small ∣∣∣∣∂us∂xk

∣∣∣∣� 1, |εsk| � 1, |ωs| � 1.

A typical problem of linear elasticity consists of determining the displacement vector
(or its projections us) in terms of the prescribed linear strain tensor ε̃. This involves
an integration of the system of six differential equations (2.9). The components of the
strain tensor ε̃ in this system are assumed to be continuous together with the derivatives
of the first and second order. The number of equations (six) exceeds the number of the
unknowns (three), thus the problem will have a solution only when certain additional
conditions are imposed on the components of tensor ε̃. This can be illustrated by the
following example. Let us assume that a medium is divided into elementary blocks. Let
each block be subjected to a deformation in the form of small extensions and small shears
of the original right-angled block. The obtained bodies can be a continuous (i.e. without
gaps) medium only by properly matching the deformation of separate block. This occurs
when a displacement vector u exists such that it is continuous along with the derivatives
up to at least third order and the prescribed tensor ε̃ is its deformation. These conditions
are, so called, Saint-Venant’s compatibility conditions, and they have the following form

∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

=
∂2γ12

∂x1∂x2

,
∂

∂x1

(
∂γ12

∂x3

+
∂γ31

∂x2

− ∂γ23

∂x1

)
= 2

∂2ε11

∂x2∂x3

,

∂2ε22

∂x2
3

+
∂2ε33

∂x2
2

=
∂2γ23

∂x2∂x3

,
∂

∂x2

(
∂γ23

∂x1

+
∂γ12

∂x3

− ∂γ31

∂x2

)
= 2

∂2ε22

∂x3∂x1

,

∂2ε33

∂x2
1

+
∂2ε11

∂x2
3

=
∂2γ13

∂x1∂x3

,
∂

∂x3

(
∂γ31

∂x2

+
∂γ23

∂x1

− ∂γ12

∂x3

)
= 2

∂2ε33

∂x1∂x2

.

(2.10)

In practice the first invariant of the strain tensor plays particularly an important role,
which is defined as follows

ϑ = I1(ε̃) = div u.

This invariant has a physical meaning of the dilatation.

2.4 Constitutive equations

The objective of the static analysis of a continuum is to search for that state, among all
feasible states of stress (satisfying the equations of statics throughout the volume and
on the surface), which is actually realised for the adopted physical model of a particular
medium. This model is determined by the constitutive law, namely, for a large number of
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media it consists of prescribing relations between the stress tensor and the strain tensor.
In the linear elasticity theory it is a linear relationship between the stress tensor and
the strain tensor. For a linear elastic body this relationship presents a system of linear
equations relating the components of these tensors and expresses the generalised Hooke’s
law. Also the temperature appears in the expression for the constitutive law.

Prescribing the constitutive law leads to a closed system of differential equations which
allows one to determine the state of stress in the body and the displacement vector of the
particles of the medium.

The constitutive law of the linear-elastic body under an isothermal deformation process
(θ = 0) is written down in the form

σ̃ = λϑẼ + 2µε̃, (2.11)

where Ẽ is the unit tensor, λ and µ are the constant moduli of elasticity called the Lamé
moduli.

By using eq. (2.11) one can easily express the strain tensor ε̃ in terms of the stress
tensor σ̃. We have

I1 (σ̃) = σ = (3λ+ 2µ)ϑ = 3kϑ, ϑ =
σ

3λ+ 2µ
,

so that

ε̃ =
1

2µ

(
σ̃ − λ

3λ+ 2µ
σẼ

)
. (2.12)

Equalities (2.11) and (2.12) express the generalised Hooke’s law. The behaviour of a
material is prescribed by means of two constants and this is a consequences of assumptions
on the medium isotropy and smallness of the components of tensor ∇u enabling one to
keep only a linear term in the general quadratic dependence between the aligned tensors
σ̃ and ε̃.

Equations (2.11) and (2.12) are written in terms of the components of tensors σ̃ and
ε̃ in the following way

σ11 = λϑ+ 2µε11, σ12 = 2µε12 etc.,

ε11 =
1

2µ

(
σ11 −

λ

3λ+ 2µ
σ

)
, ε12 =

1

2µ
σ12 etc. (2.13)

Lamé’s moduli are used in theoretical papers whereas in the technical literature they
are replaced by other moduli of elasticity, most commonly by Young’s modulus E and
Poisson’s ratio ν. In order to introduce these parameters we separate the term with σ11

in eq. (2.13) for ε11

ε11 =
1

2µ

[
σ11

(
1− λ

3λ+ 2µ

)
− λ

3λ+ 2µ
(σ22 + σ22)

]
=

=
λ+ µ

µ (3λ+ 2µ)

[
σ11 −

λ

2 (λ+ µ)
(σ22 + σ33)

]
.
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Using the notation
µ (3λ+ 2µ)

λ+ µ
= E,

λ

2 (λ+ µ)
= ν (2.14)

the generalised Hooke’s law (2.13) reduces to the form

ε11 =
1

E
[σ11 − ν (σ22 + σ33)] , ε12 =

1

2µ
σ12,

ε22 =
1

E
[σ22 − ν (σ33 + σ11)] , ε23 =

1

2µ
σ23,

ε33 =
1

E
[σ33 − ν (σ11 + σ22)] , ε13 =

1

2µ
σ13.


Using eq. (2.14), the expressions for Lamé’s moduli, in terms of E and ν, are put in

the form

µ =
E

2 (1 + ν)
, λ = 2µ

ν

1− 2ν
.

2.5 Boundary value problems of linear elasticity

The basic equations governing elasticity theory can be classified into three groups of
relationship. The first group is presented by the equations of statics in volume V

div σ̃ + ρK = 0, (2.15)

relating six components of the symmetric stress tensor σ̃ by three equations.
The second group of equations determines the linear strain tensor ε̃ in terms of the

displacement vector u

ε̃ =
1

2

[
∇u + (∇u)T

]
. (2.16)

Here we have six equations determining the components of the linear strains tensor by
means of the first derivatives of the displacement vector.

The constitutive law for a linear elastic body is formulated in the third group of six
equations. For an isotropic solid in an isothermal or adiabatic process this law, referred
to as Hooke’s law, is written in the form

σ̃ = 2µ

(
ν

1− 2ν
ϑ Ẽ + ε̃

)
(2.17)

or in the form of the inverse relations

ε̃ =
1

2µ

(
σ̃ − ν

1 + ν
σ Ẽ

)
.
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The three groups contain a total of fifteen equations, which is the same number of
unknowns – twelve components of two symmetric tensors of second rank σ̃ and ε̃ and
three components of vector u.

The conditions on the surface need to be added to the system of equations (2.15)-(2.17)
determining the behaviour of the linear elastic body in its volume. These conditions pre-
scribe either the surface forces or the displacement of the surface points. These distinguish
the internal problem for the elastic body bounded from outside from the external problem
for an unbounded medium with a cavity or cavities. For each of these problems one states
three types of problems.

In the first problem a kinematic boundary condition is posed. In a volume V the
displacement vector is sought such that it takes a prescribed value on the surface O
bounding this volume

u|O = u∗(x1, x2, x3).

Evidently, coordinates x1, x2, x3 are related by the surface equation.
The second boundary value problem is the static one. Given the distribution of surface

forces F, the boundary condition implies the equilibrium equation on the surface

n · σ̃|0 = F.

The third boundary value problem is the mixed one. A kinematic condition is posed
on part O1 of the surface, whereas on the other part O2 a static boundary condition holds

u|O1 = u∗(x1, x2, x3),

n · σ̃|O2 = F.


Remark 1. In this thesis we will follow the classification of the boundary value problem
which we have shown. But in literature one can find another classification, where the first
boundary value problem is the static one, and the second is the kinematic problem (see
for example [Mußchelischwili 1971]).

Two ways of solving the problems of elasticity theory are known. The first one implies
determining the displacement vector u. Using this it is not difficult to calculate the strain
tensor ε̃ in terms of u and thus the stress tensor in terms of ε̃. This is the only way
when the first boundary value problem is considered. However, this way is not always
the simplest one and in many cases the way of solving the problem in terms of stresses
is favoured. Then one poses the question of seeking a statically possible stress tensor σ̃
such that the corresponding strain tensor ε̃ satisfies the compatibility condition.

By solving the basic equations of the linear elasticity with respect to displacement
vector we obtain the Lamé equation

µ∆u + (λ+ µ)grad div u + ρK = 0, (2.18)
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or in the form of projections onto the axes of the Cartesian coordinate system

(λ+ µ)
∂ϑ

∂x1

+ µ∆u1 + ρK1 = 0,

(λ+ µ)
∂ϑ

∂x2

+ µ∆u2 + ρK2 = 0,

(λ+ µ)
∂ϑ

∂x3

+ µ∆u3 + ρK3 = 0,


where

ϑ = div u =
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

. (2.19)

2.6 Boundary value problems in nonsmooth domains

Apart from theoretical studies on elasticity theory and continuum mechanics, which can be
found in many books, for instance [Malvern 1969, Sokolnikoff 1946], a lot of research was
done in the direction of applications of this theory to engineering problems. Corresponding
results covering not only elasticity, but also plasticity can be found, for instance, in
[Timoshenko & Goodier 1951, Ilyushin & Lensky 1959], for more details we recommend
to work with the references therein.

In many of these studies only simplified engineering models are considered, it means
that methods of solution are constructed only for some canonical and very classical exam-
ples of engineering practice. But it’s also a well-known fact that some kind of irregularities
in a body, like for instance a crack, can lead to a significant changes in a stress distribution.
One of the first works in that direction was done by Westergaard in [Westergaard 1939],
where he has shown an influence of a crack on a stress distribution in an infinite body.
Later on his significant results lead to a special part of the continuum mechanics, called
the fracture mechanics. The fracture mechanics considers bodies with cracks and inclu-
sions, and it’s focusing on finding the influence of these irregularities on overall stress
distribution in the body. To get an overview of results in this field we refer to some
classical works, like [Anderson 2005, Broek 1984, Liebowitz 1968].

In 1965 Lurie in his book [Lurie 1965] has shown that solutions must be constructed
more carefully not only in the case of cracks or inclusions, but even for more common
boundary irregularities like sharp corners or wedges (see Fig. 2.4). Thus he has shown
that the boundary of a domain has a significant influence on the solution of a boundary
value problem. And therefore many of the classical methods which work perfectly for
smooth domains (domains without corners) cannot be easily applied for solution of a
boundary value problem in nonsmooth domains.

Corresponding to the present time the problem of behaviour of a solution (usually
called a regularity of solution) for nonsmooth domains is a highly important topic. The
importance comes from the fact, that nowadays the majority of engineering problems is
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x1

x2

α

α

1
Figure 2.4: Corner with an opening angle 2α

solved by numerical methods, and typically the theory of convergence of these methods
is based on the regularity of the exact solution. Therefore the quality of error estimates
strongly depends on the quality (regularity) of the exact solution.

With developing the theory of Sobolev spaces the question of regularity of a solution
of a boundary value problem in domains with boundary singularities starts to attract
mathematicians to work in this direction. One of the first works in this field were done by
Kondratiev in the sixties. To avoid a long list of references we refer only to the summary of
his results, which can be found in his book with Borsuk [Borsuk & Kondratiev 2006] and
the reference therein. By these works it has become clear that the methods of analysis of
boundary value problems in smooth domains cannot be applied to the case of nonsmooth
domains. Kondratiev has studied the problem of regularity in the L2 space by applying the
method of the Mellin transformation. His results were extended to arbitrary Lp spaces
and other functional spaces by Kozlov, Maz’ya, and Roßmann. The summary of their
results can be found in the books [Kozlov et al. 1997, Kozlov et al. 2001]. Instead of
working with the Mellin transformation, Maz’ya worked with operator theory. According
to his results the order of singularity can be obtained by studying the eigenvalues of an
operator pencil of a differential equation.

Particularly in [Kozlov et al. 2001] the authors have considered the Lamé system of
isotropic elasticity in an angle and a cone with vertex at the origin. In that case the
displacement field u near an isolated vertex has the form u = rαu(ω), where r denotes
the distance to the vertex and ω are spherical coordinates in the base of the cone. The
knowledge of α and u enables one to determine not only the asymptotics of stresses
near conic points, but also the regularity of a weak solution in scales of Sobolev spaces.
The pairs (α, u) can be characterised as eigenvalues and eigenvectors of an operator in a
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domain on the unit sphere. This pencil is Fredholm. By considering general singularities

rα
s∑

k=0

1

k!
(log r)kus−k(ω)

one arrives at generalised eigenfunctions of the pencil. In the book [Maz’ya & Soloview 2010]
these results were also extended to the integral equations in domains with singularities at
the boundary.

The generality of the results obtained by Kondratiev and Maz’ya makes it difficult to
apply them for analysis of specific problems appearing in real-life applications. But in the
1980s their results were applied and improved by P. Grisvard in his books [Grisvard 1985]
and [Grisvard 1992]. Instead of working with the most general case, he has considered
polygonal domains with mixed boundary conditions, which is the most common case
appearing in engineering practice. Particularly Grisvard has considered a domain Ω in
a plane case with polygonal boundary and Ω has only one reentrant corner of measure
ω > π at the origin defined by 0 < θ < ω in the appropriate polar coordinates r, θ. He
has shown that the solution u of the Poisson equation can be decomposed into the sum

u = uR + cS

of

(i) a regular part uR ∈ W 2,2(Ω) whose behaviour is not affected by the presence of
corners and

(ii) a singular part cS where S is the explicit model singular solution

S = rα sin(α θ)

where α = π
ω

and c is a constant depending only on the data f in the Poisson
equation.

In his books Grisvard has presented a series of results on the regularity of a solution of
such problems not only in two dimensional geometry, but also in three dimensional case,
where the nonsmooth domain is represented by a polyhedron. More precisely, he has
studied the edge behaviour which may be described by a three dimensional domain with
one reentrant wedge whose edge is the z′Oz axis, defined by O < θ < ω in the appropriate
cylindrical coordinates r, θ, z. There the solution can be decomposed into the sum

u = uR + (K ? c)S

of

(i) a regular part uR ∈ W 2,2(Ω) and

(ii) a singular part (K ? c)S where K = r
π(r2+z2)

is a fixed Poisson kernel while c is an

arbitrary element of the fractional order Sobolev space W 1− π
ω
,2(R).
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Another specification of the results was presented in a paper [Rössle 2000] where the
theories of Maz’ya, and Grisvard were applied to a study of a corner singularity for the
Lamé equation (2.18) in a plane. This paper has presented a dependence of a regularity of
a solution on an opening angle of a corner. Another important theoretical results were pre-
sented in [Costabel & Dauge 2002] where more general elliptic systems were considered.
The authors have considered so-called Agmon-Douglis-Nirenberg systems and they have
proved that for such general elliptic systems with the same boundary condition on both
sides of the crack, the singularity exponents of all singular functions satisfying the differ-
ential equation have the form 1

2
+ k with integer k. For systems of elasticity with general

material law they have obtained the results proved by Maz’ya in [Kozlov et al. 2001].
From these theoretical studies it has become clear, that methods of solution of bound-

ary value problems must be adapted in a proper way to be able to describe a singularity
caused by nonsmoothness of a domain. This task becomes even more difficult if we take
into account that domains appearing in the engineering practice are not of a simple ge-
ometry, and therefore a possible application of analytic methods is rather limited. As an
alternative to the analytical methods an adaptation of numerical methods is intensively
studied during last years [Fleming et al. 1997]. The so-called Extended and Generalised
Finite Element methods are the most popular at the moment, an extensive review of
these methods can be found in [Belytschko et al. 2009]. The main idea of these methods
is to introduce a set of so-called enrichment functions, which serve to obtain a correct
asymptotic behaviour of a solution near the singularity. These enrichment functions are
added then to a standard finite element basis in a small region around the singularity.
Such a construction allows to use all flexibility of the classical finite element method. But
this approach also has several disadvantages:

(i) The enrichment functions are based on some well-known analytical solutions from
the fracture mechanics, therefore they have a correct asymptotic behaviour. But
the well-known analytical solutions are constructed for canonical problems, like a
crack in an infinite plate. But in a bounded domain one has to take into account
boundary conditions which will influence the behaviour of the analytical solution
near the singularity. By the construction the well-known analytical solutions for
infinite bodies cannot represent this influence of the boundary conditions.

(ii) By introducing the enrichment functions in a certain region we typically loose the
continuity between the enriched elements and the standard elements. To overcome
this problem the Generalized Finite Element Method was introduced by Melenk
in his PhD thesis [Melenk 1995]. In the GFEM, the introduction of the special
functions into the approximation is done by a simple multiplication of the special
function with the vertex “hat” functions based on the linear or the bilinear finite
element shape functions, as in the partition of unity methods [Babuška et al. 1996,
Melenk 1997]. For the details of a construction of this method we refer to a paper
[Strouboulis et al. 2001] and an overview of this method [Babuška et al. 2004].

(iii) The third main disadvantage is that even in the case of a conformal coupling with
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the standard finite elements the constructed solution in the field near an inclusion
or a crack is not an exact solution to the differential equation in that region. This
disadvantage is not so obvious since any of the finite element methods gives us the
best approximation of the analytical solution with respect to certain norms. But
if one wants to calculate some physical quantities which are not given directly by
the best approximation (for example, strain energy, stress intensity factors, etc.),
then a set of local refinements could be necessary. Such local refinements signifi-
cantly increase computational costs, but if one has an exact solution to a differential
equation, then it would be possible to calculate these quantity of interest without
additional refinement.

Due to the above mentioned disadvantages and based on the fact that before the
nineties not so many various versions of the finite element method were available some
researchers were looking for an approach which could combine advantages of the finite
element and the analytical solution. One example of such a combination was introduced by
Piltner in his PhD thesis [Piltner 1982], where he has introduced a special finite element
containing a crack or a hole. This special element is based on an analytical solution,
which is constructed by the complex function theory. A coupling with standard finite
elements is realised via nodes on the boundary of the special element, see Fig. 2.5. This
approach was further developed in his works [Piltner 1985, Piltner 2003, Piltner 2008].
In [Piltner 2003] a singular behaviour of stresses near a corner depending on an opening
angle was studied. This results coincide with more theoretical work in [Rössle 2000], but
were done from more applied point of view by working only with method of the complex
function theory, which we will explain and use in chapter 3.

1
Figure 2.5: Finite elements with a circular/elliptic hole and with an internal crack ac-
cording to [Piltner 2003]

Piltner has shown promising results obtained by his method, but a continuous coupling
between two solution was still missing. Since he has coupled two solution only by values
at the nodes on the boundary of the special element a global solution has jumps passing
this boundary. The analytical solution in the special element is a purely analytic function,
and the finite element solution is based on spline function, therefore they cannot be equal
on the boundary between them except values at some specific points. Looking at the
quality of the solution it is not completely satisfying that one improves the approximation
of a point singularity (zero-dimensional) of the displacement field and as a result the
displacement field has a one-dimensional jump.

To overcome the problem of discontinuity between an analytical and a finite element
solution we propose in the next chapters of this thesis a new method for coupling. Similar
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to the approach of Piltner we introduce a special element which is located near a sin-
gularity. Instead of using a special element which contains a crack completely, we work
with the special element which covers only a crack tip, see Fig. 2.6. This approach gives
us more adaptivity of the method, particularly we can cover the case of a surface crack,
which cannot be solved by the approach of Piltner.

Crack

1

Figure 2.6: Special element for a continuous coupling between two solutions

The main goal of this method is to get the global continuity of the solution, i.e. to
couple the analytical solution with the finite element solution continuously not only via
nodes at the boundary between two solution, but through the whole interaction interface.
To obtain this continuity we will construct the coupling elements (curved triangles in Fig.
2.6), which are based on a special interpolation operator preserving the analytical solution
on the interface.

Another goal of the proposed method is to use the classical version of the finite element
method. This goal is related to the simplicity of the method, that one can use the most
canonical form of the FEM and one can obtain anyway a continuous coupling. This
approach is different to the GFEM, which requires more sophisticated technique for the
numerical integration. Another difference to the GFEM is that in the proposed method
the special functions (analytic functions) are not simply multiplied with the vertex “hat”
functions, but are used in the constructions of the finite element shape functions. By this
construction the shape functions satisfy the differential equation in the region near the
singularity. Throughout the next chapters we will explain and develop the ideas of that
method with more details.
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Chapter 3

Application of function theoretic
methods to linear elasticity problems

A lot of different analytical and numerical methods are available to construct solutions to
problems of linear elasticity in the plane. Among the other analytical methods (like for
instance, series expansion approach, fundamental solutions, etc.) one of the oldest and
well established are the methods based on the complex function theory. This approach
is based on the complex representation of the stress function, and the pioneering work in
this direction was done by G. W. Kolosov [Kolosov 1909]. In his doctoral thesis he has
shown a representation of a general solution to a problem of plane elasticity in terms of
two independent analytic functions of one complex variable z, which are also called the
complex potentials (see for instance [Green & Zerna 1968] or [Bower 2010]).

The next fundamental work in this direction was done by N. I. Muskhelishvili, who was
a student of Kolosov. In his book [Mußchelischwili 1971], the first edition was published
in 1931, he has given a strong mathematical foundation for a proposed method of solution.
He has developed ideas not only for the method introduced by Kolosov, but he has shown a
remarkable series of examples for application of classical tools of complex function theory,
such as Cauchy integral formula and conformal mappings.

The methods of complex function theory are not limited only to boundary value prob-
lems of linear elasticity, but they are in particular interesting for boundary value prob-
lems with singularity, like in fracture mechanics (a crack tip singularity). One of the first
works in this field was done by H.M. Westergaard [Westergaard 1939], where he has used
a complex-valued function as a stress function. Muskhelishvili in his book has shown how
the same solution can be obtained by using the Kolosov-Muskhelishvili formulae. Later
on in the book of Liebowitz [Liebowitz 1968] applications of the complex function theory
to problems of fracture mechanics were discussed in detail. The advantage of the com-
plex functions approach is an exact representation of the behaviour of a solution near the
singularity. But a drawback of this approach is a limitation to standard (canonical) do-
mains. Domains which are coming from real engineering practice are of more complicated
shape. For such domains it’s a very complicated task to construct an analytical solution
satisfying the boundary values, and in many cases this task is unsolvable. To overcome

22



this limitation we propose another strategy: to construct an analytical solution to a crack
tip problem and couple it continuously with one of the well known numerical methods,
like the finite element method, for the part of body which is free of singularity.

In this chapter we will introduce the methods of the complex function theory. Also in
this chapter we will introduce the basic idea of the proposed method for coupling of an
analytical and a finite element solution. To proceed with coupling ideas, at first we need
to construct analytical solutions to a crack tip problem in two dimensional case.

3.1 Kolosov-Muskhelishvili formulae for linear elas-

ticity problems

In sequel we will consider the equations of elasticity theory without volume forces. In this
case components of stress tensor can be expressed in terms of one additional function, so
called the stress function or the Airy function, which plays a crucial role in plane elasticity.

In this case the equilibrium equations are written as follow

∂σ11

∂x1

+
∂σ12

∂x2

= 0,

∂σ21

∂x1

+
∂σ22

∂x2

= 0.

(3.1)

The first of these equation represents a necessary and sufficient condition for the existence
of a function B(x1, x2), which satisfies the following conditions

∂B

∂x1

= −σ12,

∂B

∂x2

= σ11.

The second equation from (3.1) is a necessary and sufficient condition for the existence of
a function A(x1, x2), which satisfies the following conditions

∂A

∂x1

= σ22,

∂A

∂x2

= −σ12.

The comparison of the two equations for σ12 = σ21 shows that

∂A

∂x2

=
∂B

∂x1

,
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and it follows the existence of a function U(x1, x2), such that

A =
∂U

∂x1

, B =
∂U

∂x2

.

After the substitution of these values for A(x1, x2) and B(x1, x2) into previous equation
we see that there always exists a function U(x1, x2). Components of stress tensor can be
written by using this function as follows

σ11 =
∂2U

∂x2
2

, σ12 = − ∂2U

∂x1∂x2

, σ22 =
∂2U

∂x2
1

. (3.2)

This fact was first discovered by G.B. Airy in 1862. The function U(x1, x2) is called the
stress function or the Airy function.

Since functions σ11, σ12, σ22 are univalent continuous with their derivatives up to second
order, the function U(x1, x2) must have continuous derivatives up to fourth order, and
these derivatives starting from second order must be univalent functions in the whole
domain occupied by a body.

Of course, the inverse formulation is also true: if a function U(x1, x2) has the men-
tioned properties, then the components σ11, σ12, σ22 which are given by (3.2) will satisfy
also equations (3.1). But it doesn’t mean immediately, that these components are re-
lated with some possible strain state. To assure that we need to fulfil the compatibility
conditions (2.10), which can be rewritten in terms of stresses

∆ (σ11 + σ22) = 0,

or taking into account that
σ11 + σ22 = ∆U(x1, x2),

we get finally

∆∆U(x1, x2) = 0 or
∂4U

∂x4
1

+ 2
∂4U

∂x2
1∂x

2
2

+
∂4U

∂x4
2

= 0.

This equation is called the biharmonic equation, and the solution of it is a biharmonic
function.

If a stress function U(x1, x2) is given, then corresponding stresses are given by (3.2).
But displacements still need to be determined. So, we need to find functions u1, u2 from
the equations

λϑ+ 2µ
∂u1

∂x1

=
∂2U

∂x2
2

,

λϑ+ 2µ
∂u2

∂x2

=
∂2U

∂x2
1

,

µ

(
∂u2

∂x1

+
∂u1

∂x2

)
= − ∂2U

∂x1∂x2

.

(3.3)
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After the solution of the first two equations with respect to ∂u1
∂x1
, ∂u2
∂x2

we have

2µ
∂u1

∂x1

=
∂2U

∂x2
2

− λ

2(λ+ µ)
∆U,

2µ
∂u2

∂x2

=
∂2U

∂x2
1

− λ

2(λ+ µ)
∆U.

If we denote
∆U = P,

and substitute in the first equation P − ∂2U
∂x21

instead of ∂2U
∂x22

, and doing the same with the

second equation, we obtain

2µ
∂u1

∂x1

= −∂
2U

∂x2
1

+
λ+ 2µ

2(λ+ µ)
P,

2µ
∂u2

∂x2

= −∂
2U

∂x2
2

+
λ+ 2µ

2(λ+ µ)
P.

(3.4)

The function P is a harmonic function, since

∆P = ∆∆U = 0.

Let Q denote a harmonic function conjugated to P , i.e. a function which satisfies the
Cauchy-Riemann equations

∂P

∂x1

=
∂Q

∂x2

,
∂P

∂x2

= − ∂Q
∂x1

.

Then the expression
f(z) = P (x1, x2) + i Q(x1, x2)

will be a holomorphic function of the complex variable z = x1 + i x2 in a domain S
occupied by a body. Let further

ϕ(z) = p+ i q =
1

4

∫
f(z)dz. (3.5)

Obviously we have

ϕ′(z) =
∂p

∂x1

+ i
∂q

∂x1

=
1

4
(P + i Q),

and by using the Cauchy-Riemann equations

∂p

∂x1

=
∂q

∂x2

,
∂p

∂x2

= − ∂q

∂x1

,
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we get
∂p

∂x1

=
∂q

∂x2

=
1

4
P,

∂p

∂x2

= − ∂q

∂x1

= −1

4
Q.

Thus

P = 4
∂p

∂x1

= 4
∂q

∂x2

,

and therefore equations (3.4) can be rewritten as

2µ
∂u1

∂x1

= −∂
2U

∂x2
1

+
2(λ+ 2µ)

λ+ µ

∂p

∂x1

,

2µ
∂u2

∂x2

= −∂
2U

∂x2
2

+
2(λ+ 2µ)

λ+ µ

∂q

∂x2

.

After integration we get

2µu1 = − ∂U
∂x1

+
2(λ+ 2µ)

λ+ µ
p+ f1(x2),

2µu2 = − ∂U
∂x2

+
2(λ+ 2µ)

λ+ µ
q + f2(x1),

where f1(x2) and f2(x1) are functions depending only on x2 and x1 respectively. Substi-
tuting these values into third equation of (3.3) and taking into account that

∂p

∂x2

+
∂q

∂x1

= 0,

we get
f ′1(x2) + f ′2(x1) = 0,

where it follows that functions f1(x2) and f2(x1) have the form

f1 = 2µ(−εx2 + α), f2 = 2µ(εx1 + β),

where α, β, ε are arbitrary constants. Omitting these relations which give only a rigid
body motion, we finally get the representations for displacements

2µu1 = − ∂U
∂x1

+
2(λ+ 2µ)

λ+ µ
p,

2µu2 = − ∂U
∂x2

+
2(λ+ 2µ)

λ+ µ
q.

Since the function ϕ(z) defined by (3.5) is holomorphic in the domain S, then dis-
placements u1 and u2 are univalent functions in the whole domain. Thus we see that any
biharmonic function defines a strain state, which satisfies all of the conditions.

Finally, we recall the theorem which plays a crucial role in application of the complex
function theory to problems of linear elasticity.
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Theorem 3.1 (Goursat’s theorem in C). A function f ∈ C4(Ω) is a solution of ∆∆U = 0
⇔ ∃ two holomorphic functions Φ(z) and Ψ(z) where

f =
1

2

(
z̄Φ(z) + zΦ(z) + Ψ(z) + Ψ(z)

)
= Re (z̄Φ(z) + Ψ(z))

and z = x1 + i x2 ∈ C.

We omit the proof of the theorem and give just references. The original proof was
constructed in [Goursat 1898]. Later on another proof was introduced by Muskhelishvili
in his book [Mußchelischwili 1971], where he had used the conception of holomorphic
functions and harmonic conjugates, which we have introduced above.

With the help of the Goursat’s theorem and presented formulae, components of stresses
and displacement can be also formulated as follows

2µ(u1 + i u2) = κΦ(z)− zΦ′(z)−Ψ(z),

σ11 + σ22 = 2
[
Φ′(z) + Φ′(z)

]
= 4 Re [Φ′(z)] ,

σ22 − σ11 + 2i σ12 = 2[z̄Φ′′(z) + Ψ′(z)],

(3.6)

where Φ(z) and Ψ(z) are two holomorphic functions in terms of the complex variable z.
The factor κ is Kolosov’s constant, which is defined as follows

κ =

{
3− 4ν for plane strain,
3− ν
1 + ν

for plane stress.

The formulae (3.6) were introduced by G. W. Kolosov [Kolosov 1909], and later on were
theoretically justified by N. I. Muskhelishvili [Mußchelischwili 1971]. These formulae are
known as the Kolosov-Muskhelishvili formulae.

Let us now discuss the question about definiteness of the introduced functions Φ(z)
and Ψ(z). For a given stress state the function Φ′(z) is defined from the second formula
of (3.6) up to an imaginary constant, since the real part of this function is given. Hence,
all possible functions are different from Φ′(z) only by a purely imaginary constant

Φ′1(z) = Φ′(z) + C i, (3.7)

where Φ′1(z) is a possible function and C is a real constant.
By taking into account that

Φ(z) =
∫

Φ′(z)dz, Ψ(z) =
∫

Ψ′(z)dz,

Φ1(z) =
∫

Φ′1(z)dz, Ψ1(z) =
∫

Ψ′1(z)dz,

it follows
Φ1(z) = Φ(z) + C i z + γ,

27



where γ = α + i β is an arbitrary complex constant.
According to (3.7) Φ′′1(z) = Φ′′(z) from the third formula of (3.6) we get

Ψ′1(z) = Ψ(z),

and finally we have
Ψ1(z) = Ψ(z) + γ′,

where γ′ is an arbitrary complex constant.
Hence, we have the following result. For a given stress state the function Ψ′(z) is fully

determined, the function Φ′(z) is determined up to the term C i, the function Φ(z) is
determined up to the term C i z + γ, and the function Ψ(z) is defined up to the term γ′,
where C is real, and γ, γ′ are arbitrary complex constants.

The inverse is also correct, i.e. a stress state will not change if we apply the following
replacement for functions Φ(z) and Ψ(z)

Φ(z) → Φ(z) + C i z + γ,
Ψ(z) → Ψ(z) + γ′,

(A)

where C is real, and γ, γ′ are arbitrary complex constants.
Let us now consider the case if components of displacement u1, u2 are given. If com-

ponents of displacement are given, then components of stresses are fully determined.
Therefore, in this case we cannot use replacements different from the described above.
Let us check how this replacement influences the components of displacement, which are
given by

2µ(u1 + i u2) = κΦ(z)− zΦ′(z)−Ψ(z).

By direct substitution we see, that

2µ(u1 + i u2) becomes 2µ(u∗1 + i u∗2),

where
2µ(u∗1 + i u∗2) = 2µ(u1 + i u2) + (κ+ 1)C i z + κ γ − γ̄′.

Hence, by assuming γ = α + i β, γ′ = α′ + i β′, we have

u∗1 = u1 + u0
1, u∗2 = u2 + u0

2,

where

u0
1 = −(κ+ 1)C

2µ
x2 +

κα− α′
2µ

, u0
2 =

(κ+ 1)C

2µ
x1 +

κβ + β′

2µ
.

We see, that additional terms have the form

u0
1 = −ε x2 + α0, u0

2 = ε x1 + β0,

where

ε =
(κ+ 1)C

2µ
, α0 =

κα− α′
2µ

, β0 =
κβ + β′

2µ
,
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and these terms express just a rigid body motion.
Finally, we have that the replacement (A) can be performed without changing of

displacement only in the case if

C = 0, κγ − γ′ = 0.

Therefore, for given components of displacement the constants C, γ, γ′ can be chosen
arbitrarily.

3.1.1 Analytical solution near the crack tip

By using the Kolosov-Muskhelishvili formulae (3.6) we are going to construct now the
analytical solution in a field near a crack tip. Later on this analytical solution will be
used in the coupling process. Let now Ω ⊂ C be a bounded simply connected domain
containing a crack. The crack tip produces a singularity of the solution in the domain Ω.
Due to this fact the solution near the crack tip must be handled more carefully, for that
reason we will use the methods of the complex function theory. We locate the Cartesian
coordinate system at the crack-tip. The crack will be directed along the negative direction
of the x1 axis, and the axis x2 will be orthogonal to the crack (see Fig. 3.1).

r

ϕ
x1

x2

Crack

ΩA

1
Figure 3.1: Geometrical settings near the crack tip

We are going to switch to the polar coordinate system x1 = r cosϕ, x2 = r sinϕ,
r ≥ 0,−π ≤ ϕ < π. Corresponding to [Mußchelischwili 1971] the Kolosov-Muskhelishvili
formulae in polar coordinates are given by

2µ(ur + i uϕ) = e−iϕ
(
κΦ(z)− zΦ′(z)−Ψ(z)

)
σrr + σϕϕ = 2[Φ′(z) + Φ′(z)]

σϕϕ − σrr + 2i σrϕ = 2e2iϕ[z̄Φ′′(z) + Ψ′(z)]
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By adding the last two equations we will get the equation which connects the stresses σϕϕ
and σrϕ

σϕϕ + i σrϕ = Φ′(z) + Φ′(z) + e2i ϕ[z̄Φ′′(z) + Ψ′(z)]. (3.8)

We introduce the functions Φ(z) and Ψ(z) by series expansions in the domain ΩA

Φ(z) =
∞∑
k=0

akz
λk , Ψ(z) =

∞∑
k=0

bkz
λk ,

where ak and bk are unknown coefficients, which should be determined through the bound-
ary conditions for the global problem, and the powers λk describe the behaviour of the
displacements and stresses near the crack tip and should be determined by this asymptotic
behaviour and through the boundary conditions on the crack faces.

The crack faces are assumed to be traction free [Liebowitz 1968], i.e. the normal
stresses σϕϕ and the shear stresses σrϕ on the crack faces are equal zero for ϕ = π or
ϕ = −π. After substituting functions Φ(z) and Ψ(z) into (3.8) we get the following
equation for the stresses

σϕϕ + i σrϕ =
∞∑
k=0

rλk−1
(
λkake

iϕ(λk−1) + λkāke
−iϕ(λk−1)+

+ akλk(λk − 1)eiϕ(λk−1) + bkλke
iϕ(λk+1)

)
,

or by using Euler’s formula

σϕϕ + i σrϕ =
∞∑
k=0

rλk−1 [λkak (cos {ϕ(λk − 1)}+ i sin {ϕ(λk − 1)}) +

+λkāk (cos {ϕ(λk − 1)} − i sin {ϕ(λk − 1)}) +

+akλk(λk − 1) (cos {ϕ(λk − 1)}+ i sin {ϕ(λk − 1)}) +

+bkλk (cos {ϕ(λk + 1)}+ i sin {ϕ(λk + 1)})] .
The boundary conditions on the crack faces lead to the following system

− cos(πλk) (λkak + λkāk + akλk(λk − 1) + bkλk) +

+i sin(πλk) (λkak − λkāk + akλk(λk − 1) + bkλk) = 0,

− cos(πλk) (λkak + λkāk + akλk(λk − 1) + bkλk)−
−i sin(πλk) (λkak − λkāk + akλk(λk − 1) + bkλk) = 0.

(3.9)

The homogeneous system (3.9) has non-trivial solutions only in case if its determinant is
equals zero. The determinant of this system is given by∣∣∣∣− cos(πλk) i sin(πλk)

− cos(πλk) −i sin(πλk)

∣∣∣∣ = 2i cos(πλk) sin(πλk),
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and the exponents λk are given by

sin(2πλk) = 0 → λk =
n

2
, n = 0, 1, . . . . (3.10)

The displacement field and components of stress tensor in polar coordinates can be
written as

2µ(ur + i uϕ) =
∞∑
n=1

r
n
2

(
κ ane

iϕ(n
2
−1) − n

2
āne

−iϕ(n
2
−1) − b̄ne−iϕ(n

2
+1)
)
,

σrr + σϕϕ =
∞∑
n=1

r
n
2
−1
(
n ane

iϕ(n
2
−1) + n āne

−iϕ(n
2
−1)
)
,

σϕϕ − σrr + 2i σrϕ =
∞∑
n=1

r
n
2
−1
(
n
(
n
2
− 1
)
ane

iϕ(n
2
−1) + n bne

iϕ(n
2

+1)
)
.

(3.11)

After transformation back, the displacement field and components of stress tensor in the
Cartesian coordinates are given by the following expression

2µ(u1 + i u2) =
∞∑
n=1

r
n
2

(
κ ane

iϕn
2 − n

2
āne

−iϕ(n
2
−2) − b̄ne−iϕ

n
2

)
,

σ11 + σ22 =
∞∑
n=1

r
n
2
−1
(
n ane

iϕ(n
2
−1) + n āne

−iϕ(n
2
−1)
)
,

σ22 − σ11 + 2i σ12 =
∞∑
n=1

r
n
2
−1
(
n
(
n
2
− 1
)
ane

iϕ(n
2
−3) + n bne

iϕ(n
2
−1)
)
.

(3.12)

The formulas (3.11) and (3.12) have correct asymptotic behaviour near the crack tip,
but the boundary conditions on the crack faces must be still satisfied. To obtain the
traction free conditions on the crack faces we substitute known values of λk (3.10) into
the system (3.9), and we get

− cos
(
π
n

2

)(n
2
ak +

n

2
āk + ak

n

2

(n
2
− 1
)

+ bk
n

2

)
+

+i sin
(
π
n

2

)(n
2
ak −

n

2
āk + ak

n

2

(n
2
− 1
)

+ bk
n

2

)
= 0,

− cos
(
π
n

2

)(n
2
ak +

n

2
āk + ak

n

2

(n
2
− 1
)

+ bk
n

2

)
−

−i sin
(
π
n

2

)(n
2
ak −

n

2
āk + ak

n

2

(n
2
− 1
)

+ bk
n

2

)
= 0.

Solving this system we have the following relations between the coefficients ak and bk bn = ān −
n

2
an, n = 1, 3, . . . ,

bn = −ān −
n

2
an, n = 2, 4, . . . ,
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or in form of real and imaginary parts of the coefficients
b(1)
n = a(1)

n

(
1− n

2

)
, n = 1, 3, . . . ,

b(1)
n = −a(1)

n

(
1 +

n

2

)
, n = 2, 4, . . . ,

and 
b(2)
n = −a(2)

n

(
1 +

n

2

)
, n = 1, 3, . . . ,

b(2)
n = a(2)

n

(
1− n

2

)
, n = 2, 4, . . . .

Finally we have the following expressions for the polar components of the displacement
and the stresses

2µ(ur + i uϕ) =
∞∑

n=1,3

r
n
2

[
an
(
κ eiϕ(n

2
−1) − e−iϕ(n

2
+1)
)

+ n
2
ān
(
e−iϕ(n

2
+1) − e−iϕ(n

2
−1)
)]

+

+
∞∑

n=2,4

r
n
2

[
an
(
κ eiϕ(n

2
−1) + e−iϕ(n

2
+1)
)

+ n
2
ān
(
e−iϕ(n

2
+1) − e−iϕ(n

2
−1)
)]
,

σrr + σϕϕ =
∞∑
n=1

r
n
2
−1
(
n ane

iϕ(n
2
−1) + n āne

−iϕ(n
2
−1)
)
,

σϕϕ − σrr + 2i σrϕ =
∞∑

n=1,3

r
n
2
−1
[
an
(
n
(
n
2
− 1
)
eiϕ(n

2
−1) − nn

2
eiϕ(n

2
+1)
)

+ nāne
iϕ(n

2
+1)
]

+

∞∑
n=2,4

r
n
2
−1
[
an
(
n
(
n
2
− 1
)
eiϕ(n

2
−1) − nn

2
eiϕ(n

2
+1)
)
− nāneiϕ(n

2
+1)
]
,

and for the Cartesian components

2µ(u1 + i u2) =
∞∑

n=1,3

r
n
2

[
an
(
κ eiϕ

n
2 − e−iϕn2

)
+
n

2
ān
(
e−iϕ

n
2 − e−iϕ(n

2
−2)
)]

+

+
∞∑

n=2,4

r
n
2

[
an
(
κ eiϕ

n
2 + e−iϕ

n
2

)
+
n

2
ān
(
e−iϕ

n
2 − e−iϕ(n

2
−2)
)]
,

(3.13)

σ11 + σ22 =
∞∑
n=1

r
n
2
−1
(
n ane

iϕ(n
2
−1) + n āne

−iϕ(n
2
−1)
)
,

σ22 − σ11 + 2i σ12 =
∞∑

n=1,3

r
n
2
−1
[
an

(
n
(n

2
− 1
)
eiϕ(n

2
−3) − nn

2
eiϕ(n

2
−1)
)

+ nāne
iϕ(n

2
−1)
]

+

∞∑
n=2,4

r
n
2
−1
[
an

(
n
(n

2
− 1
)
eiϕ(n

2
−3) − nn

2
eiϕ(n

2
−1)
)
− nāneiϕ(n

2
−1)
]
.

(3.14)
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The displacement field (3.13) satisfies all the conditions on the crack faces. The
asymptotic behaviour at the crack tip is controlled by half-integer powers. Values n < 0
lead to unboundedness of the function (3.13) at the origin, the value n = 0 corresponds to a
constant displacement field and is usually omitted by mechanical reasons [Anderson 2005].
Because of these reasons the series must begin with n = 1.

If we compare this general form of the solution with the classical solutions from
[Liebowitz 1968, Anderson 2005] for a crack in an infinite body, we will see that the
constructed solution (3.13)-(3.14) contains these well-known solution in first terms, but
the coefficients an must be determined via the global boundary conditions. The idea
to work with an infinite series comes from the fact that we are looking for solutions in
bounded domains, therefore non-leading terms in a series could play an important role
for a behaviour near the crack tip. This construction doesn’t require a prior knowledge
about a mode of fracture, and via coupling with a finite element solution we must be able
to represent different scenarios near the crack tip dependently on the global boundary
conditions. The construction of such a coupling we will describe in Chapter 4.

3.2 Conformal mapping

Another important tool of the complex function theory which helps to solve various applied
problems is the conformal mapping. In this section we give only a brief introduction to
this topic. Conformal mapping plays a crucial role in mechanical applications. Originally
it was introduced based on physical considerations, and only later it was found out that
it has also some very important properties from point of view of the complex function
theory.

In literature exist several ways of deriving a definition of a conformal mapping: one can
introduce at first a whole concept of analytic functions and relate it afterwards to some ge-
ometrical properties of these functions, see for example [Bieberbach 1964, Nehari 1952]; or
another approach which studies immediately geometrical properties of mapping functions
and observing their analyticity afterwards. We will follow the second approach based
on ideas from [Lavrentev & Shabat 1987]. Let us assume, that we have a continuous
one-to-one mapping of a domain D onto a domain D∗:

w = f(z) = u(x, y) + i v(x, y). (3.15)

Additionally, we assume that functions u(x, y) and v(x, y) are differentiable in this domain.
Let us fix an arbitrary point z0 ∈ D and in the neighbourhood of this point we change
increments of the functions u and v by their differentials. By definition of the differential,
the increments can be represented as

u− u0 =
∂u

∂x
(x− x0) +

∂u

∂y
(y − y0) + η1∆r,

v − v0 =
∂v

∂x
(x− x0) +

∂v

∂y
(y − y0) + η2∆r,

 (3.16)
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where η1∆r and η2∆r are the terms of higher order with respect to other terms in these

formulae, partial derivatives are taken at the point z0, and ∆r =
√

(x− x0)2 + (y − y0)2,

and η1, η2 tend to zero for ∆r → 0. The change of the increments by differentials is
equivalent to omit in the relations (3.16) the terms η1∆r and η2∆r (we assume, that(
∂u

∂x

)2

+

(
∂u

∂y

)2

and

(
∂v

∂x

)2

+

(
∂v

∂y

)2

are different from zero, otherwise representation

3.16 wouldn’t be possible).
Geometrically this change is equal to the changing of the mapping w = f(z) by the

following mapping

u− u0 =
∂u

∂x
(x− x0) +

∂u

∂y
(y − y0) ,

v − v0 =
∂v

∂x
(x− x0) +

∂v

∂y
(y − y0) ,

 (3.17)

which is called the main linear part of the mapping (3.15). The mapping (3.17) can be
rewritten as follows

u = ax+ by + l,
v = cx+ dy +m,

}
(3.18)

where the coefficients

a =
∂u

∂x
, b =

∂u

∂y
, c =

∂v

∂x
, d =

∂v

∂y
,

l = u0 −
∂u

∂x
x0 −

∂u

∂y
y0, m = v0 −

∂v

∂x
x0 −

∂v

∂y
y0,

(3.19)

independent on x and y. The mapping (3.18) represents the linear transformation of a
plane (x, y).

Now we recall some basic properties of linear transformations. Let the linear trans-
formation (3.18) be uniquely defined in a whole plane z, additionally we assume that its
determinant

∆ = ad− bc
is different from zero. Then an inverse mapping of (3.18) is also uniquely defined in a
whole plane w, which is given by

x =
1

∆
(du− bv − dl + bm),

y =
1

∆
(−cu+ av + lc− am).

 (3.20)

Thus, for ∆ 6= 0 the mapping (3.18) realises a one to one mapping of a whole plane z to
a whole plane w.
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Let us consider a set of parallel lines with a slope k = tanϕ, i.e. lines y = kx+C. By
using formulae (3.20) we observe that this set of lines transforms also to a set of parallel
lines −cu+ av + lc− am = k(du− bv − dl + bm) + C∆ with a slope

k∗ = tan θ =
c+ kd

a+ kb
.

It follows, that the mapping (3.18) transforms squares in a plane z to parallelograms in a
plane w.

Let z0 = x0 + iy0 and w0 = u0 + iv0 be a pair of points corresponding to each other
under the mapping (3.18), then we can represent this mapping as follows

u− u0 = a(x− x0) + b(y − y0),
v − v0 = c(x− x0) + d(y − y0),

}
and its inverse by

x− x0 =
d

∆
(u− u0)− b

∆
(v − v0),

y − y0 = − c

∆
(u− u0) +

a

∆
(v − v0).

 (3.21)

By formulae (3.21) we can say that circles with the center at a point z0

(x− x0)2 + (y − y0)2 = r2,

transformed under the mapping (3.18) into ellipses with the center at the point w0

(d2 + c2)(u− u0)2 − 2(bd+ ac)(u− u0)(v − v0) + (b2 + a2)(v − v0)2 = ∆2r2. (3.22)

An important question: what should be the conditions for the coefficients in the map-
ping (3.18) to assure that circles will be transformed to new circles? From (3.22) we get
the following equations

bd+ ac = 0, a2 + b2 = c2 + d2. (3.23)

First equation gives us
a

d
= −b

c
= λ, and consequently by using a = λ d, d = −λ c from

the second equation we get λ2 = 1. Therefore we need to consider two cases.
The case λ = 1 leads to the relations

a = d, b = −c, (3.24)

and the mapping (3.15) is described by a linear function of a complex variable as follows

w = Az +B, (3.25)

where
A =

√
∆eiα, B = l + im.
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Thus under conditions (3.24) the linear transformation (3.18) is reduced to a translation
of a plane z on a vector B = l + im, and its rotation by an angle α = ArgA and a
proportional dilation with a coefficient

√
∆ = |A|. Such transformation is called the

proper similarity map.
In the case λ = −1 we have

a = −d, b = c, (3.26)

and ∆ = −a2−b2 < 0. Therefore the transformation (3.18) can be written in the following
form

w =
√
−∆eiαz̄ +B. (3.27)

Thus under conditions (3.26) additionally to a rotation and translation we get a symmetry
with respect to the real axis by changing z to z̄. This transformation is called the improper
similarity map.

From the geometrical meaning of mapping (3.25) and (3.27) it becomes clear, that they
preserve the similarity of figures, in particular they preserve angles between two lines, and
transform squares in the plane z to squares in the plane w. The linear transformations
having this property are called the orthogonal transformations. Thus conditions (3.23)
are orthogonality conditions.

Finally we have the following definition

Definition 3.1. The one-to-one mapping

w = f(z) = u(x, y) + i v(x, y)

of the domain D onto the domain D∗ is called conformal, if in the neighbourhood of any
point of D the main linear part of this mapping preserves the angle between lines in D
and keeps the orientation.

From that follows two main properties of conformal mappings

1. a conformal mapping transforms infinitesimal circles into circles with accuracy up
to infinitesimals of higher order;

2. a conformal mapping preserves angles between curves at the points of their inter-
section.

By using formulae (3.19) and (3.24) we can write the conditions for conformality of a
mapping (3.15) in the following form

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

and the following condition should be satisfied

∆ =

(
∂u

∂x

)2

+

(
∂v

∂x

)2

= |f ′(z0)2| 6= 0,
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otherwise the linear part of a transformation w = f(z) is degenerated, that contradicts
to a conformality condition. Thus the conformality conditions coincide with the Cauchy-
Riemann conditions for a function f(z) be a holomorphic (analytic) in a domain D, and
its derivative f ′(z) must be different from zero everywhere in D. Finally we obtain the
following definition:

Definition 3.2. A function w = f(z) realises a conformal mapping of a domain D if and
only if this function in a domain is 1) one-to-one, 2) holomorphic and 3) everywhere in D
the derivative f ′(z) is different from zero.

To this short introduction in conformal mapping we recall the main theorem of the the-
ory of conformal mappings, also known as the Riemann mapping theorem [Riemann 1851].

Theorem 3.2. For any simply connected domains D and D∗ (with boundaries that con-
tain more than one point), and for arbitrary defined points z0 ∈ D and w0 ∈ D∗ and a
real number α0, there exists one and only one conformal mapping

w = f(z)

of the domain D onto the domain D∗ such that

f(z0) = w0, arg f ′(z0) = α0.

By the assertion of the Riemann mapping theorem we can try to simplify practical
problems in a two dimensional geometry by mapping them to some simple or canonical
domains. But in reality one problem remains open: how to construct a mapping func-
tion from one domain to another? One the most canonical methods for construction of a
mapping function is the Bergman kernel method [Levin et al. 1978], for an overview on
other existing methods we refer to [Gaier 1964]. Unfortunately these methods lead to a
boundary value problem for the mapping function, which is usually much more compli-
cated than the original problem. This drawback significantly reduces possible practical
applications of the conformal mapping for arbitrary domains. But by research of many
mathematicians a lot of mapping functions were already constructed, for an overview we
refer to [Kober 1957]. Among these functions a particular interest for applied problems
in engineering plays the Schwarz-Christoffel mapping, which allows to map polygonal do-
mains (typical type of domains coming from engineering) to some canonical domains. In
the next section we introduce some more details of this mapping.

3.2.1 Schwarz-Christoffel mapping

Many problems of the continuum mechanics are formulated for domains which can be
represented by polygons. Such domains can be successfully mapped to one of the canon-
ical domains (unit disk or half plane) by the Schwarz-Christoffel mapping. Following
[Driscoll & Trefethen 2002], we introduce basic definitions for application of the Schwarz-
Christoffel mapping.
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A (generalised) polygon Γ is defined by a collection of vertices w1, . . . , wn and real
interior angles α1π, . . . , αnπ. It is convenient for indexing purposes to define wn+1 = w1

and w0 = wn. The vertices, which lie in the extended complex plane C ∪ {∞}, are given
in counterclockwise order according to the orientation of the boundary curve (i.e., locally
the polygon is “to the left”as one traverses the side from wk to wk+1).

The interior angle at vertex k is defined as the angle swept from the outgoing side at
wk to the incoming side. If |wk| <∞, we have the angle coefficients αk ∈ (0, 2]. If αk = 2,
the sides incident on wk are collinear, and wk is the tip of a slit. The definition of the
interior angle is applied on the Riemann sphere if wk = ∞. In this case, αk ∈ [−2, 0].
Specifying αk is redundant if wk and its neighbours are finite, but otherwise αk is needed
to determine the polygon uniquely.

In addition to preceding restrictions on the angles αk, we require that the polygon
makes a total turn of 2π. That is,

n∑
k=1

(1− αk) = 2,

or, equivalently,
n∑
k=1

αk = n− 2.

We shall also require the polygon to be simple (forbidden is a self-intersection and thus
covering part of the plane more than once). This condition has no elementary expression
in terms of the vertices and angles – in a sense, it is artificial.

The following theorem gives the formula for the conformal map from the unit disk E.

Theorem 3.3. Let P be the interior of a polygon Γ having vertices w1, . . . , wn and interior
angles α1π, . . . , αnπ in counterclockwise order. Let ω be any conformal map from the unit
disk E to P . Then the Schwarz-Christoffel formula for a disk has the form

ω(z) = A+ C

z∫
z0

n∏
k=1

(
1− ζ

zk

)αk−1

dζ, (3.28)

for some complex constants A and C, where wk = ω(zk) for k = 1, . . . , n.

The exponents in the integrand induce the correct angles in the image of the unit disk,
regardless of where the prevertices lie on the unit circle. However, the locations of the
prevertices determine the side lengths of the resulting image. In order to map to a given
target, then, we must determine the locations of the prevertices by enforcing conditions
involving the side length.

The three degrees of freedom in the map may be determined by specifying zn−2 = −1,
zn−1 = −i, and zn = 1. We need still to determine n− 3 real quantities – the arguments
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of the remaining prevertices. For a bounded polygon, this accomplished by the n− 3 real
conditions, the so-called, parameter problem∣∣∣∣∣zj+1∫

zj

ω′(ζ)dζ

∣∣∣∣∣∣∣∣∣∣z2∫z1 ω′(ζ)dζ

∣∣∣∣∣
=
|wj+1 − wj|
|w2 − w1|

, j = 2, . . . , n− 2, (3.29)

where ω′ comes from (3.28). The following theorem explains why vertex wn does not
explicitly appear in these conditions.

Theorem 3.4. Assume that αn 6= 1 and αn 6= 2. A bounded polygon is uniquely deter-
mined, up to scaling, rotation, and translation, by its angles and the n − 3 side-length
ratios appearing on the right-hand sides of (3.29).

3.2.2 Kolosov-Muskhelishvili formulae under a conformal map-
ping

Let us consider an arbitrary simply connected domain Ω ⊂ C with boundary Γ = Γ0∪Γ1,
which is represented by a polygon (see Fig. 3.2). We also allow that the domain Ω can
have a slit or several slits, but the simply connectedness of Ω has not to be disturbed by
these slits.

Ω

Γ0

Γ1

1

Figure 3.2: Polygonal simply connected domain

We will solve a boundary value problem for the Lamé equation (2.18) in Ω. As we
have discussed above, an exact solution to a linear elasticity problem can be constructed
by the Kolosov-Muskhelishvili formulae (3.6), but due to polygonal shape of the domain
Ω, in general, it is a non trivial task to construct an exact solution to a boundary value
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problem in the original geometry. But by applying a conformal mapping (3.15), which is
defined by the Schwarz-Christoffel mapping (3.28) we can transfer the original problem
to one of the canonical domains.

Under a conformal mapping ω(ζ) from the original domain to the unit disk, the
Kolosov-Muskhelishvili formulae are written as follows [Mußchelischwili 1971]

2µ|ω′(ζ)|(ur + i uϕ) =
ζ̄

r
ω′(ζ)

[
κΦ(ζ)− ω(ζ)

ω′(ζ)
Φ′(ζ)−Ψ(ζ)

]
,

σrr + σϕϕ = 2
[
Φ
′
(ζ) + Φ′(ζ)

]
,

σϕϕ − σrr + 2i σrϕ =
2ζ2

r2ω′(ζ)

[
f(ζ) Φ

′′
(ζ) + ω′(ζ)Ψ

′
(ζ)
]
.

(3.30)

The mapping function ω(ζ) in formulae (3.30) represents a mapping from original
geometry to the unit disk, i.e. for the case of a polygonal domain from Fig. 3.2 it implies
a calculation of the inverse of the Schwarz-Christoffel mapping (3.28). Fig. 3.3 shows a
Schwarz-Christoffel mapping ω(z) from the unit disk E to a polygon P , and its inverse
mapping ω−1(ζ). Under a conformal mapping each part of original boundary is mapped
on to a respective part of the unit circle.

x1

x2

r

ϕ

z1

z2

z3
. . .

. . .

zn−2

zn−1

zn

ω(z)

ω−1(ζ)

w1

w2

w3

wn−2

wn−1

wn

1
Figure 3.3: Mapping of the unit disk to a polygon

Formulae (3.30) together with the Schwarz-Christoffel formulae (3.28) allow us to han-
dle linear elasticity problems for realistic geometries. In practical calculations it leads to
a mixed boundary value problem in the unit disk, which can be efficiently solved by using
the method of analytic continuation, i.e. by solving a Riemann-Hilbert boundary value
problem for a holomorphic function. The solution of a Riemann-Hilbert boundary value
problem in a context of elasticity theory was firstly discussed in [Mußchelischwili 1971].

For practical purposes it’s important to mention that the conformal mapping allows
to map curved cracks to straight cracks, which are well studied in the literature.
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3.3 Solution of three dimensional problems by the

Papkovich-Neuber approach

Since not all problems which are coming from real applications can be satisfactory reduced
to plane problems, it’s significantly important to have methods which allow to construct
a solution of spatial problems. In the beginning of the 1930s Papkovich [Papkovich 1932],
and Neuber [Neuber 1934] simultaneously have proposed a method for solution of three
dimensional problems of linear elasticity, which is nowadays known as the Papkovich-
Neuber approach. This approach will play also a crucial role in a generalisation of the
Kolosov-Muskhelishvili formulae to three dimensions, which we will introduce in next
sections.

The main idea of this approach is to solve a homogeneous system of equations (2.18)
by using a spatial stress function which could be represented by four harmonic functions.
Thus a general solution according the Papkovich-Neuber approach has the following form

2µu1 = − ∂F
∂x1

+ CΦ1,

2µu2 = − ∂F
∂x2

+ CΦ2,

2µu3 = − ∂F
∂x3

+ CΦ3,

(3.31)

where Φ1,Φ2,Φ3 are harmonic functions, and F is a stress function.
By substitution (3.31) into equations (2.18) we get after some calculations

− ∂

∂x1

[
2µ

1− 2ν
ϑ−∆F

]
= 0,

− ∂

∂x2

[
2µ

1− 2ν
ϑ−∆F

]
= 0,

− ∂

∂x3

[
2µ

1− 2ν
ϑ−∆F

]
= 0.

As we can see the expression in brackets doesn’t depend on coordinates and therefore we
get

2µϑ− (1− 2ν)∆F = C,

where C is a constant corresponding to a rigid body motion, and we assign it to zero, i.e.
we get

2µϑ = (1− 2ν)∆F.

By substituting (3.31) into (2.19) we obtain

2µϑ = −∆F + C

(
∂Φ1

∂x1

+
∂Φ2

∂x2

+
∂Φ3

∂x3

)
.
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By comparing the last two equation we get the following relation

2(1− ν)∆F = C

(
∂Φ1

∂x1

+
∂Φ2

∂x2

+
∂Φ3

∂x3

)
, (3.32)

which implies that the stress function F should contain a homogeneous part Φ0 ∈ ker ∆
and an inhomogeneous part satisfying equation (3.32), and finally we have

F = Φ0 + x1Φ1 + x2Φ2 + x3Φ3, (3.33)

where Φi, i = 0, 1, 2, 3 are harmonic functions. The application of the Laplace operator ∆
on the equation (3.33) leads to

∆F = 2

(
∂Φ1

∂x1

+
∂Φ2

∂x2

+
∂Φ3

∂x3

)
,

and by comparing the result with (3.32) we see that

C = (1− ν).

Finally we obtain that a spatial stress function F satisfies the biharmonic equation

∆∆F = 0,

as we have seen it previously in the case of plane problems.
The Papkovich-Neuber approach allows us to construct an exact solution to spatial

problems of linear elasticity if we choose four harmonic functions. The question of reducing
a number of functions arises in applications. Because an exact solution with four harmonic
functions is only possible for very simple geometry, and in a case of numerical calculations
such a variability in a choice could lead to instability of a system of linear equations coming
from boundary conditions.

Another problem with the Papkovich-Neuber approach is that representation of so-
lutions three dimensional elasticity is complete, but introduces many linear dependent
functions which can lead to numerical stability problems. This disadvantage was ob-
served by Bauch in [Bauch 1981] where it was shown that if classical spherical harmonics
are used in the Papkovich-Neuber representation then 8n + 4 polynomial solutions are
generated, but the dimension of the subspace of polynomial solutions of degree n is only
6n+3. To fix the linear dependent functions is a very difficult task, but one can overcome
these difficulties by working with a hypercomplex function theory which we introduce in
the next section.

3.4 Methods of hypercomplex function theory for three

dimensional problems

As we have shown in section 3.1 the complex function theory is a very powerful tool
for solving two dimensional problems of linear elasticity, but it’s not restricted only to
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elasticity problems and can be easily applied to various problems of mathematical physics.
Due to a wide range of applications of the complex function theory it’s naturally to ask
about its suitable generalisation to higher dimensions.

In 1843 W.R. Hamilton has introduced the algebra of the real quaternions as a general-
isation of complex numbers to R4, and in 1878 W.K. Clifford has proposed the real Clifford
algebra which generalises complex numbers to higher dimensions. But only around 1930
a hypercomplex analysis in the algebra of real quaternions and in the real Clifford al-
gebra appeared as a special topic in works of R. Fueter [Fueter 1935], G.C. Moisil and
N. Théodoresco [Moisil & Théodoresco 1931]. A generalisation of the complex analysis
to higher dimensions was introduced in the late sixties by a group of Belgian mathe-
maticians, and it was called the Clifford analysis. Their results were published later in
the book [Brackx et al. 1982]. A way from the classical complex analysis to its higher
dimensional generalisation is fully presented in [Gürlebeck et al. 2008].

After developing the theoretical basis of a higher dimensional analysis a question of
applications of the new theory was posted by several mathematicians. For an overview of
richness of the hypercomplex analysis in various fields of mathematical physics we refer
to [Gürlebeck & Sprößig 1989, Kravchenko & Shapiro 1996, Gürlebeck & Sprößig 1997,
Kravchenko 2003] and the references therein. A direct application of the hypercomplex
function theory to linear elasticity problems was presented in [Bock & Gürlebeck 2009] by
introduction of a three dimensional generalisation of the Kolosov-Muskhelishvili formu-
lae (3.6). These, so-called, generalised Kolosov-Muskhekishvili formulae describe the phys-
ical state of a solid body in terms of two monogenic functions, and make it possible to con-
struct exact solutions to such problems. Construction and proofs related to these formulae
were described in the PhD thesis [Bock 2009], and in [Bock & Gürlebeck 2009] where a
polynomial basis which is generated by these formulae was studied. Another example of
application to three-dimensional elasticity problems could be found in [Patrault et al. 2014].

In this section we introduce some basic ideas of the hypercomplex analysis, and we
will end up with the generalised Kolosov-Muskhelishvili formulae.

3.4.1 Basics of the hypercomplex analysis

Let e0, e1, e2, e3 be an orthonormal basis of the Euclidean vector space R4. We introduce
an associative multiplication of the basis vectors ej subject to the multiplication rules:

eiej + ejei = −2δije0 i, j = 1, 2, 3,
e0ei = eie0 = ei, i = 0, 1, 2, 3,

e1e2e3 = −e0.

Extended by R-linearity to R4 this non-commutative product generates the algebra of real
quaternions denoted by H. The real vector space R4 will be embedded in H by identifying
the element a = (a0, a1, a2, a3) ∈ R4 with the element

a = a0e0 + a1e1 + a2e2 + a3e3 ∈ H.
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Note that e0 = (1, 0, 0, 0)T is the multiplicative unit element of H. As usual we will
identify e0 with 1 if there is no reason for misunderstandings.

The real number Sc a := a0 is called the scalar part of a and Vec a := a1e1+a2e2+a3e3

is the vector part of a. Analogous to the complex case, the conjugate of a := a0 + a1e1 +
a2e2 + a3e3 ∈ H is the quaternion ā := a0 − a1e1 − a2e2 − a3e3. The norm of a is given
by |a| =

√
aā and coincides with the corresponding Euclidean norm of a, as a vector in

R4. Since we will solve a boundary value problem from spatial linear fracture mechanics,
let us consider the subset

A := spanR {1, e1, e2}
of H. The real vector space R3 can be embedded in A by the identification of each element
x = (x1, x2, x3)T ∈ R3 with the reduced quaternion

x = x1 + x2e1 + x3e2 ∈ A.

As a consequence, we will often use the same symbol x to represent a point in R3 as well
as to represent the corresponding reduced quaternion. Note that the set A is only a real
vector space but not a sub-algebra of H. For the coordinate axes x, y, z we will use the
notation x1, x2, x3. Moreover, we introduce the Fueter variables [Fueter 1935]

z1 = −1
2
(e1x + xe1) = x2 − x1e1,

z2 = −1
2
(e2x + xe2) = x3 − x1e2,

and we have
(z1, z2) : z1 = x2 − x1e1, z2 = x3 − x1e2

∼= R3 ∼= A.
Let Ω be an open subset of R3 with a piecewise smooth boundary. An H-valued function
is a mapping

f : Ω→ H

such that

f(x) =
3∑
i=0

f i(x)ei, x ∈ Ω.

The coordinates f i are real-valued functions defined in Ω, i.e.

f i : Ω→ R, i = 0, 1, 2, 3.

Continuity, differentiability or integrability of f are defined coordinate-wisely. For
continuously real-differentiable functions f : Ω ⊂ R3 → H, which we will denote for
simplicity by f ∈ C1(Ω,H), the operator

∂̄ =
∂

∂x1

+ e1
∂

∂x2

+ e2
∂

∂x3

(3.34)
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is called generalized Cauchy-Riemann operator. The corresponding conjugate generalized
Cauchy-Riemann operator is defined as

∂ =
∂

∂x1

− e1
∂

∂x2

− e2
∂

∂x3

. (3.35)

We define and denote the Cauchy-Riemann operators completely analogous to the complex
one dimensional case. Here, we follow the notation used in [Gürlebeck et al. 2008], which
is opposed to the commonly used notation in the Clifford analysis, but analogues to
complex function theory.

Definition 3.3. A function f ∈ C1(Ω,H) is called left (resp. right) monogenic in Ω if

∂̄f = 0 in Ω (resp., f ∂̄ = 0 in Ω).

We point out that in general left (resp. right) monogenic functions are not right (resp.
left) monogenic. From now on we use only left monogenic functions that, for simplicity,
we call monogenic and sometimes denote by f ∈ ker ∂̄.

Definition 3.4. Using the generalized Cauchy-Riemann operator (3.34) and its conju-
gate (3.35) we define the differential operators

∂i =
1

2
∂ei =

1

2
ei

(
∂

∂x1

+ e1
∂

∂x2

+ e2
∂

∂x3

)
and the associated conjugate differential operator

∂i =
1

2
∂ei =

1

2

(
∂

∂x1

− e1
∂

∂x2

− e2
∂

∂x3

)
ei

with i = 0, 1, 2.

3.4.2 Generalised Kolosov-Muskhelishvili formulae

Analogously to the plane case, first we introduce a generalisation of the theorem of Gour-
sat. For all proofs in this section we refer to [Bock & Gürlebeck 2009] and [Bock 2009].

Theorem 3.5. Let Ω be a star-shaped domain and F ∈ C4(Ω,R) be a solution of the
biharmonic equation ∆∆F = 0. Then there exist two monogenic functions Φ,Ψ in Ω,
with

F (x) =
1

2

[
x̄Φ(x) + Φ(x)x + Ψ(x) + Ψ(x)

]
= Sc (x̄Φ(x) + Ψ(x)) .

By applying this generalised theorem of Goursat and by using the Papkovich-Neuber
approach, the so-called, generalised Kolosov-Muskhelishvili formulae were introduced in
the previous study [Bock & Gürlebeck 2009]. For complete derivation we refer again to
[Bock 2009], and here we only recall them.

2µ(u1 + u2e1 + u3e2) = (∂1Φ)z1 + (∂2Φ)z2 − x̄(∂0Φ̄)− ∂0Ψ− ∂0Ψ̄+

+
2α− 1

2
(Φ− e3Φ̄e3),

(3.36)
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σ11 + σ22 + σ33 = (4− α)(∂0Φ + ∂0Φ) = 2(4− α)Sc[∂0Φ], (3.37)

−σ11 + σ22 + σ33+ = 2
[
(∂0∂0Φ)x− z̄1(∂0∂1Φ)− z̄2(∂0∂2Φ) + ∂0∂0Ψ + ∂0∂0Ψ

]
+

+2σ12e1 + 2σ13e2 +(2− α)(∂0Φ + ∂0Φ) + (1− α)(∂0Φ̄ + e3(∂0Φ̄)e3),
(3.38)

σ11 − σ22 + σ33− = 2e1

[
(∂0∂1Φ)x− z̄1(∂1∂1Φ)− z̄2(∂1∂2Φ) + ∂0∂1Ψ + ∂0∂1Ψ

]
−

−2σ12e1 + 2σ23e3 −e1(∂1Φ + (α− 2)∂1Φ) + 2e1(∂0Φ̄)e1 − αe1(∂2Φ− ∂2Φ)e3+

+(α− 1)e2(∂1Φ̄)e3,
(3.39)

σ11 + σ22 − σ33− = 2e2

[
(∂0∂2Φ)x− z̄1(∂1∂2Φ)− z̄2(∂2∂2Φ) + ∂0∂2Ψ + ∂0∂2Ψ

]
−

−2σ13e2 − 2σ23e3 −e2(∂2Φ + (α− 2)∂2Φ) + 2e2(∂0Φ̄)e2 + αe2(∂1Φ− ∂1Φ)e3+

+(1− α)e1(∂2Φ̄)e3,
(3.40)

where Φ, Ψ are two monogenic functions, µ and α = 2(1− ν) are material parameters.
The formulae (3.36)-(3.40) represent all of the components of the displacement vector

u and the stress tensor σ̃ in terms of only two monogenic functions, and thus we can
construct exact solutions to three-dimensional elasticity problems by choosing appropriate
functions Φ and Ψ. But unfortunately in practice a choice or a construction of these
monogenic functions is not a trivial task.

One of the first monogenic polynomial system was introduced in [Malonek 1990]. The
constructed monogenic system was based on a permutational product, which requires
high computational costs for higher order polynomials. To reduce computational costs
several other monogenic polynomial systems were introduced in many works, we refer
to [Bock & Gürlebeck 2010], [Caçao et al. 2001], [Caçao et al. 2004], [Morais & Le 2010],
and the references therein. These systems were based on spherical harmonics and were
constructed to provide the Appell property. Such Appell systems are very efficient in
numerical calculation. But for real applications in three-dimensional elasticity theory,
which are given in an arbitrary geometry, it’s a very difficult task to find coefficients of
monogenic systems from the given boundary conditions. This task, in general, cannot be
solved for an arbitrary geometry. Therefore it’s important to propose a method which
uses advantages of the hypercomplex function theory and combines them with a well-know
numerical method. Such a coupled method we will introduce during the next chapters.
Due to the complexity of a construction in higher dimensions we will start from a complex
plane, and we will discuss and proof as much as we can for that case.
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Chapter 4

Realisation of coupling

Often in practice we face problems which cannot be efficiently solved by single standard
methods, like for instance singular problems, or coupled problems which connect differ-
ent fields of mathematical physics. The solution of such problems by standard numerical
methods, like the finite element method [Zienkiewicz 1971], or the boundary element
method [Brebbia & Dominguez 1992], can be very costly and inaccurate. Therefore al-
ready in the late seventies an approach which combines together the finite element and
the boundary element method was proposed by Zienkiwicz in [Zienkiewicz et al. 1977].
This approach has shown a good performance by utilising advantages of both methods.
In particular such a coupling makes sense in a case of interface problems, problems in un-
bounded domain, multiphysics problems, problems with a singularity, for details we refer
to [Costabel & Stephan 1990], [Hsiao et al. 2000], [Bermúdez et al. 2007] and references
therein.

Another coupled method which is mainly motivated by handling complicated ge-
ometries is the Schwarz alternating method. This method was proposed by Schwarz
[Schwarz 1890] as an iterative procedure for constructing a harmonic function in a non-
trivial domain by decomposition the domain into two subdomains and solving correspond-
ing “coupling” boundary value problems. After more than one hundred years this method
was brought to the engineers by works of Lions [Lions 1988, Lions 1989, Lions 1990], and
became a basis for the domain decomposition method [Smith et al. 1996]. The idea of
this method is a decomposition of an original domain into several subdomains. This idea
is of a significant importance in nowadays since computer clusters and parallel computa-
tions are becoming more common things. By the domain decomposition method one can
handle the computation with the finite element method which contains millions degrees
of freedom in reasonable time.

The FEM-BEM coupling and the domain decomposition method are very powerful
numerical tools for handling complicated problems, but they are also not free of drawbacks,
for instance, in a case of BEM one has to solve numerically a boundary integral equation,
which could lead to additional refinement in a coupling region. In the case of the domain
decomposition method a resulting system of equations could contain millions of unknowns,
and thus cannot be handled on a normal computer.
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An alternative could be an idea of such a coupled method which will lead to lower
computational costs without loosing the accuracy of a solution. To insure the accuracy one
can start with a construction of an analytical solution in a certain region of interest, and
couple it after this with a well-established numerical method, such as the finite element
method, in the remaining part of a domain. The idea of such coupling was introduced in a
series of works of R. Piltner [Piltner 1982, Piltner 1985, Piltner 2003, Piltner 2008], where
he has introduced a special element containing an exact solution for a crack problem, and
coupled it with the standard FEM via nodes at the boundary of the special element. In
his approach the coupling was realised only by values at the nodes, and a global solution
between nodes has a jump.

In previous studies a new method for a coupling of an analytical and finite element solu-
tion was proposed, see for instance [Bock et al. 2012, Bock et al. 2012, Bock et al. 2013,
Gürlebeck & Legatiuk 2014]. The main idea of this approach is to get the global conti-
nuity of the solution through the whole interaction interface between two solutions. To
obtain that continuity we introduce a special element containing an exact solution to a
singular problem, in our case to a crack tip problem, and couple it with a finite element
solution by, so-called, coupling elements. The requirement for these coupling elements is
to insure C0 continuity for displacements. For that reason a special interpolation opera-
tor has been constructed that preserves the analytical solution on the coupling interface,
couples it continuously with special elements which have a polynomial connection to the
standard elements. In this chapter we introduce step by step this concept.

In [Bock et al. 2013] following P. G. Ciarlet [Ciarlet 1978] some basic steps for con-
vergence analysis of the proposed method have been performed. In this theory one of the
most important roles is played by the unisolvence property of the interpolation operator
that is used for the finite element approximation. In [Bock et al. 2012] it has been shown
that for a given special distribution of interpolation nodes the corresponding interpola-
tion problem is uniquely solvable. In this chapter the generalised results for an arbitrary
number of nodes will be presented. This is the necessary result to define the basis func-
tions for the interpolation operator which permit an arbitrary refinement of the mesh and
makes the method practically applicable. Based on this result the convergence and error
estimates of the proposed scheme will be proved in Chapter 5.

4.1 Problem of coupling

Let now Ω ⊂ C be a bounded simply connected domain containing a crack. We introduce
a triangulation Fh over Ω as follow

Ω = ∪
T∈Fh

T ∪
ΩSE∈Fh

ΩSE, (4.1)

where T are triangular finite elements, and ΩSE are special elements, which serve to
describe the behaviour of the continuum near a crack tip. The special elements are
always located at the crack tip (see Fig. 4.1).
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Figure 4.1: Geometrical settings of the special element

The domain ΩSE is decomposed in the two sub-domains ΩSE = ΩA ∪ΩD separated by
the fictitious joint interface ΓAD = ΩA ∩ ΩD. The discrete “numerical” domain, denoted
by ΩD, is modelled by two different kinds of elements: the constant strain triangles (CST-
elements) with C0 continuity (elements A−H in the Fig. 4.1) and the coupling elements
with C0 continuity to the CST-elements, and with C∞ continuity on the interface ΓAD

(elements I-IV in the Fig. 4.1), which couple the “numerical” domain ΩD with the
“analytical” domain ΩA. The C∞ continuity on the interface ΓAD should be understood
in a sense, that the interpolation functions are infinitely differentiable on the interface.
But, this does not mean automatically that the connection between elements will be better
than C0(Ω). For that we would need to introduce additional conditions.

A crack is modelled as a mathematical cut, and the nodes 3, 10 and 4, 11 belong to
the upper and lower crack faces, respectively. We call the sub-domain ΩA analytical in
that sense, that the constructed solutions are exact solutions to the differential equation
in ΩA. Analogously, the numerical sub-domain ΩD means, that the constructed solutions
are based on the finite element approximation. The idea behind this special element is to
get a continuous connection through the whole interaction interface ΓAD by introducing
new shape functions over the curved triangles I-IV.

Fig. 4.1 shows only an example of possible triangulation inside the special element ΩSE.
For practical reasons we can increase the number of coupling elements on the interface
ΓAD, we will illustrate this option in convergence analysis and numerical examples in the
next chapters.

In the domain Ω we solve the following boundary value problem for the Lamé equa-
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tion (2.18) 
−µ∆u− (λ+ µ)grad div u = f in Ω,
u = 0 on Γ0,

2∑
j=1

σij(u)nj = gi on Γ1, 1 ≤ i ≤ 2.

The basic idea of coupling consists in construction of a strong solution to the Lamé
equation in ΩA, and couple it with a weak solution which is obtained by finite element
method. The details of weak formulation and finite element method we will discuss in
Chapter 5. The strong solution to the crack tip problem was constructed in Chapter 3
and it’s given by formula (3.13) for displacements, for completeness of explanations we
repeat this formula here

2µ(u1 + i u2) =
∞∑

n=1,3

r
n
2

[
an
(
κ eiϕ

n
2 − e−iϕn2

)
+
n

2
ān
(
e−iϕ

n
2 − e−iϕ(n

2
−2)
)]

+

+
∞∑

n=2,4

r
n
2

[
an
(
κ eiϕ

n
2 + e−iϕ

n
2

)
+
n

2
ān
(
e−iϕ

n
2 − e−iϕ(n

2
−2)
)]
.

4.2 Main interpolation theorem

After construction of the analytical solution we need to solve the problem of coupling on
the interface ΓAD. Let us consider n nodes on the interface ΓAD belonging to the interval
[−π, π] (see Fig. 4.2). To define the unknown coefficients an in (3.13) we introduce a
special interpolation operator and solve an interpolation problem on the interface ΓAD.
The idea is to get C0 continuity through the joint interface ΓAD. This can be reached if
the corresponding interpolation problem is always solvable and the interpolation operator
is preserving the analytical solution on ΓAD. For connection with standard finite elements
we will use a linear interpolator.

As the interpolation function fn(ϕ) we use partial sums of the analytical solution (3.13)
restricted to the interface ΓAD (i.e. r = rA). Additionally, to be able to represent by
this interpolation function all polynomials up to a certain degree, we add a constant
to our ansatz. As it was mentioned in Chapter 3, typically the constant part in the
analytical solution for an infinite plane is excluded by mechanical reasons: the constant
means a rigid motion of the infinite plane. But in bounded domains situation is different,
because boundary conditions play the most important role. In this case the coefficients
in the analytical solution are controlled by the boundary conditions, i.e. if the boundary
conditions do not allow a rigid body motion, then the constant part would be removed
during construction of the solution. Thus the adding of a constant to the ansatz doesn’t
influence the mechanical behaviour.
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Figure 4.2: The coupling problem

We obtain the following interpolation function on the interface ΓAD

fn(ϕ) =

N1∑
k=0,2,...

r
k
2
A

[
ak

(
κ eiϕ

k
2 + e−iϕ

k
2

)
+
k

2
āk

(
e−iϕ

k
2 − e−iϕ( k

2
−2)
)]

+

+

N2∑
k=1,3,...

r
k
2
A

[
ak

(
κ eiϕ

k
2 − e−iϕ k2

)
+
k

2
āk

(
e−iϕ

k
2 − e−iϕ( k

2
−2)
)]

,

(4.2)

where the numbers of basis functions are related to n as follows:

N1 = n−m, with

{
m = 2 for even n,
m = 1 for odd n,

N2 = n−m, whith

{
m = 1 for even n,
m = 2 for odd n.

In [Bock et al. 2012] it is shown that for n = 5 the corresponding interpolation problem
at the interface can be solved for arbitrary data. To have a basis for the convergence
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of the coupled FE-method we need the solvability for arbitrary number and location of
nodes. Main problems are the occurrence of the half integer powers in the set of ansatz
functions and the fact that the coefficients ak and āk are not independent.

Now we formulate the following theorem:

Theorem 4.1. For n given arbitrary nodes ϕ0, ϕ1, . . . , ϕn−1 basis functions of the form
(4.2) exist, satisfying the canonical interpolation problem

f<i>n (ϕk) = δ(i−1)k, k = 0, . . . , n− 1, (4.3)

where i = 1, . . . , n is the number of the canonical problem.

Proof. Without loss of generality we will consider here the first canonical problem for
f<1>
n . In all upcoming calculations we take rA = 1. We start our proof by introducing

the new variable
t = ei

ϕ
2 , |t| = 1.

The function (4.2) can then be rewritten as

fn(t) =

N1∑
k=0,2,...

[
akκ t

k + akκ t
−k +

k

2
āk t

−k − k

2
āk t

−k+4

]
+

+

N2∑
k=1,3,...

[
akκ t

k − akκ t−k +
k

2
āk t

−k − k

2
āk t

−k+4

]
.

(4.4)

Depending on the number n of nodes on the interface ΓAD we have a different number
of functions from the even and odd parts of the basis. For the case of an even number
of nodes we have N2 = N1 + 1 and in the case of an odd number of nodes we have
N1 = N2 + 1. This fact must be taken into account during the proof.

Let us consider at first the case when the number of nodes n is even. In this case we
can write the interpolation function (4.4) as one finite sum

fn(t) =

1
2
n−1∑
k=0

[
2k + 1

2
ā2k+1 t

−2k−1 + a2kκ t
−2k + kā2k t

−2k−

−kā2k t
−2k+4 + a2k+1κ t

2k+1 − a2k+1κ t
−2k−1+

+a2kκ t
2k − 2k + 1

2
ā2k+1 t

−2k+3

]
.

(4.5)

The interpolation problem (4.3) reads as follows:

fn(tj) = δ0j, j = 0, . . . , n− 1.
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Analysing equation (4.5) we observe that the lowest degree is −n + 1. Therefore, to
obtain a polynomial we multiply both sides of (4.5) by tn−1 and we get at the nodes

1
2
n−1∑
k=0

[
2k + 1

2
ā2k+1 t

n−2k−2
j + a2kκ t

n−2k−1
j + kā2k t

n−2k−1
j −

−kā2k t
n−2k+3
j + a2k+1κ t

n+2k
j − a2k+1κ t

n−2k−2
j +

+a2kκ t
n+2k−1
j − 2k + 1

2
ā2k+1 t

n−2k+2
j

]
= δ0j t

n−1
j .

Now, we introduce a new right hand side

wj := δ0j t
n−1
j , j = 0, . . . , n− 1.

Collecting all summands with the same degree we can write the polynomial with new
coefficients αl

2n−2∑
l=0

αlt
l :=

1
2
n−1∑
k=0

[
2k + 1

2
ā2k+1 t

n−2k−2 + a2kκ t
n−2k−1+

+kā2k t
n−2k−1 − kā2k t

n−2k+3+

+a2k+1κ t
n+2k − a2k+1κ t

n−2k−2+

+a2kκ t
n+2k−1 − 2k + 1

2
ā2k+1 t

n−2k+2

]
.

(4.6)

Thus we get the following equivalent interpolation problem

2n−2∑
l=0

αlt
l
j = wj, j = 0, . . . , n− 1. (4.7)

Due to the fact that the polynomial (4.6) contains also shifted powers tn−2k+3 and tn−2k+2,
the equations relating the new coefficients αl with the original coefficients ak will change
the form with the increasing number of nodes. We will consider here only the case n > 6,
because then these relating equations take their general form and the proof applies for all
n > 6. The remaining three cases n = 2, n = 4, and n = 6 can be easily obtained directly
from (4.7) and will not influence the generality of the proof.
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For n > 6 we can separate the following four groups of equations between αl and ak:

(I)


α2j =

n− 1− 2j

2
ān−1−2j − κ an−1−2j,

α2j+1 = κ an−2−2j +
(n

2
− 1− j

)
ān−2−2j,

j = 0, 1,

(II)



α2j =
n− 1− 2j

2
ān−1−2j − κ an−1−2j −

n+ 3− 2j

2
ān+3−2j,

j = 2, . . . ,
n− 2

2
,

α2j+1 = κ an−2−2j +
(n

2
− 1− j

)
ān−2−2j −

(n
2

+ 1− j
)
an+2−2j,

j = 2, . . . ,
n− 4

2
,

(III)


α2j = κ a2j−n+1 +

2j − n− 3

2
ān+3−2j,

α2j−1 =
(n

2
− j + 2

)
κ a2j−n −

(n
2
− j + 2

)
ā2j−n,

j =
n

2
,
n+ 2

2
,

(IV)


α2j = κ a2j+1−n,

α2j−1 = κ a2j−n,
j =

n+ 4

2
, . . . , n− 1.

(4.8)

From the equations (4.8) we can calculate explicitly all of the original coefficients al. The
group (IV) leads to the following equations:

a2j−n =
α2j−1

κ
,

a2j+1−n =
α2j

κ
,

j =
n

2
+ 2, . . . , n− 1. (4.9)

This group of equations includes all of the coefficients al for l = 4, . . . , n − 1. Therefore
we need only to add equations for the four remaining coefficients. We can calculate the
coefficients a0, a1, a3 from group (III) of equations (4.8). The coefficient a2 can be obtained
from the sum of the third equation in group (III) and equation n − 6 from group (II).
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These coefficients are given by

a0 =
αn−1

2κ
+
ᾱn+3

κ2
,

a1 =

[
αn
κ

+
3ᾱn+2

2κ2

](
1− 3

4κ2

)−1

,

a2 =
αn−3 + αn+1

2κ
+

3ᾱn+5

2κ2
,

a3 =
αn+2

κ
+

1

2κ

[
ᾱn
κ

+
3αn+2

2κ2

](
1− 3

4κ2

)−1

.

(4.10)

The interpolation problem (4.7) contains 2n−1 unknown coefficients αl, but from the
interpolation nodes we can get only n equations. Therefore, we formulate n−1 additional
equations to determine all coefficients αl. For that reason we extend (4.6) to the whole
complex plane and add n− 1 Hermite-type interpolation conditions

2n−2∑
l=0,1

αl

(
∂jtl

∂tj

)
t=t∗

= w∗j , j = 0, . . . , 2n− 2, (4.11)

where for simplicity we take the additional node t∗ at 0 and the values w∗j are defined as
follows:

w∗j =

{
0, j = 0, . . . , n− 5,
βj, j = n− 4, . . . , n− 2,

(4.12)

with arbitrary complex numbers βj.
The obtained “extended” interpolation problem (4.3), (4.11) is always solvable (for

more details, see for instance [Davis 1975]). The solution of this interpolation problem
will give us all coefficients αl, which are needed to define the original coefficients ak.

To insure that the coefficients ak satisfy the original interpolation problem (4.3) we
need to satisfy compatibility conditions for the coefficients αk. By using formulae (4.9)-
(4.10) we obtain these conditions from the groups (I) and (II) of equations (4.8). The
first group gives the following four equations

α2j + α2n−2−2j − (n− 2j − 1)
ᾱ2n−2−2j

2κ
= 0,

α2j+1 − α2n−3−2j −
(
n− 2

2
− j
)
ᾱ2n−3−2j

κ
= 0,

(4.13)

for j = 0, 1. The second group leads to the remaining n− 5 equations

α2j + α2n−2−2j − (n− 2j − 1)
ᾱ2n−2−2j

2κ
+ (n− 2j + 3)

ᾱ2n−2(j−1)

2κ
= 0,

α2j+1 − α2n−3−2j −
(
n− 2

2
− j
)
ᾱ2n−3−2j

κ
+

(
n− 2

2
+ 2− j

)
ᾱ2n−2j+1

κ
= 0,

(4.14)
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for j = 2, . . . , n−6
2

.

αn+2 +
1

2

[
ᾱn
κ

+
3αn+2

2κ2

](
1− 3

4κ2

)−1

+ αn−4 +
7ᾱn+6

2κ
−

−3ᾱn+2

2κ
− 3

4κ

[
αn
κ

+
3ᾱn+2

2κ2

](
1− 3

4κ2

)−1

= 0,

(4.15)

αn−3 −
αn−3 + αn+1

2
− 3ᾱn+5

2κ
− ᾱn−3 + ᾱn+1

2κ
− 3αn+5

2κ2
+

3ᾱn+5

κ
= 0, (4.16)

κ

[
αn
κ

+
3ᾱn+2

2κ2

](
1− 3

4κ2

)−1

+ αn−2 +
5ᾱn+4

2κ
−

−1

2

[
ᾱn
κ

+
3αn+2

2κ2

](
1− 3

4κ2

)−1

= 0.

(4.17)

Our goal is to show that there exists a set of complex numbers βj such that the
compatibility conditions (4.13)-(4.17) are satisfied. Considering the first n− 4 equations
of (4.11) with the values (4.12) we get immediately that

αl = 0, i = 0, . . . , n− 5.

Applying these results to first n− 4 compatibility conditions (4.13)-(4.14) we obtain

αl = 0, i = n+ 3, . . . , 2n− 2.

Therefore first n − 4 compatibility conditions are satisfied, and we need to check the
remaining three equations (4.15)-(4.17). Taking into account the remaining three values
of w∗j we get the following equations

αn+2 +
1

2

[
ᾱn
κ

+
3αn+2

2κ2

](
1− 3

4κ2

)−1

+ βn−4 −
3ᾱn+2

2κ
−

− 3

4κ

[
αn
κ

+
3ᾱn+2

2κ2

](
1− 3

4κ2

)−1

= 0,

βn−3 −
βn−3 + αn+1

2
− β̄n−3 + ᾱn+1

2κ
= 0,

κ

[
αn
κ

+
3ᾱn+2

2κ2

](
1− 3

4κ2

)−1

+ βn−2 −
1

2

[
ᾱn
κ

+
3αn+2

2κ2

](
1− 3

4κ2

)−1

= 0.

The second equation can be satisfied only if αn+1 = βn−3 = 0. The solution of the two
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other equations is given by

αn = −
4κ2<

[
β̂n−2

]
(4κ2 − 3)

(
1− 1

2κ

) +
6κ<

[
β̂n−4

]
(4κ2 − 3)

(
1− 3

2κ

) − 4i κ2=
[
β̂n−2

]
(4κ2 − 3)

(
1 + 1

2κ

)−
−

6i κ=
[
β̂n−4

]
(4κ2 − 3)

(
1 + 3

2κ

) ,
αn+2 = −

4κ2<
[
β̂n−4

]
(4κ2 − 3)

(
1− 3

2κ

) +
2κ<

[
β̂n−2

]
(4κ2 − 3)

(
1− 1

2κ

) − 4i κ2=
[
β̂n−4

]
(4κ2 − 3)

(
1 + 3

2κ

)−
−

2i κ=
[
β̂n−2

]
(4κ2 − 3)

(
1 + 1

2κ

) ,
where

β̂n−2 := βn−2

(
1− 3

4κ2

)
,

β̂n−4 := βn−4

(
1− 3

4κ2

)
.

Finally, we obtained that all compatibility conditions are satisfied. Thus we have shown,
that such set of complex numbers βj exists, and the statement of the theorem is true for
the case of even number of nodes.

Now we will complete the proof by considering the case when the number of nodes
n is odd. We will omit some details which are similar to the even case. In the case of
an odd number of nodes we need to keep the structure of the interpolation function (4.4)
with two separate sums

fn(t) =

n−1
2∑

k=0,1

[
a2kκ t

2k + a2kκ t
−2k + kā2k t

−2k − kā2k t
−2k+4

]
+

+

n−1
2∑

k=1,2

[
a2k−1κ t

2k−1 − akκ t−2k+1 +
2k − 1

2
ā2k−1 t

−2k+1 − 2k − 1

2
ā2k−1 t

−2k+5

]
.

To simplify the above function we extract the term for k = 0 from the first sum, collect
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common terms and get

fn(t) = 2a0κ+

n−1
2∑
k

[
t−2k(a2kκ+ k ā2k)+

+t−2k+1

(
2k − 1

2
ā2k−1 − a2k−1κ

)
− k ā2kt

−2k+4−

− 2k − 1

2
ā2k−1t

−2k+5 + a2k−1κ t
2k−1 + a2kκ t

2k

]
.

The lowest degree is −n+ 1. Therefore, as in the previous case we multiply both sides
of the interpolation problem by tn−1, and we get the following equivalent interpolation
problem

2n−2∑
l=0

αlt
l
j = wj,

for j = 0, . . . , n− 1.
Since the polynomial basis contains also shifted powers tn−2k+3 and tn−2k+4 the equa-

tions relating the new coefficients αl with the original coefficients ak will change with
increasing n and take their general form for n > 7. We will consider only this case. The
remaining three cases n = 3, n = 5, and n = 7 can be easily obtained directly from the
interpolation problem and will not influence the generality of the proof.

Similar to the even case, for n > 7 we can get four groups of equations between αk
and ak

(I)


α2j = κ an−1−2j +

(
n− 1

2
− j
)
ān−1−2j,

α2j+1 =
n− 2− 2j

2
ān−2−2j − κ an−2−2j,

j = 0, 1,

(II)


α2j = κ an−1−2j +

(
n− 1

2
− j
)
ān−1−2j −

(
n+ 3

2
− j
)
an+3−2j,

α2j+1 =
n− 2− 2j

2
ān−2−2j − κ an−2−2j −

n+ 2− 2j

2
ān+2−2j,

j = 2, . . . , n−3
2
,

(III)


α2j =

(
n− 1

2
− j + 2

)
κ a2j−n+1 −

n+ 3− 2j

2
ān+3−2j,

α2j−1 = κ a2j−n+2 +
2j − n− 2

2
ān+2−2j,

j = n−1
2
, n+1

2
,

(4.18)
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(IV)


α2j = κ a2j−n+1,

α2j−1 = κ a2j−n+2,
j = n+3

2
, . . . , n− 1. (4.19)

Analogously to the even case, from equations (4.18)-(4.19) we get the explicit formulae
for the coefficients ak. From group (IV) we get the following equations for ak for k =
4, . . . , n− 1 

a2j−n+1 =
α2j

κ
,

a2j−n+2 =
α2j−1

κ
,

j =
n+ 3

2
, . . . , n− 1.

Formulae for the remaining coefficients a0, a1, a2, a3 are completely the same as in the
even case, and they are given by (4.10).

Applying the same ideas as in the case of even number of nodes we introduce some
additional Hermite-type conditions (4.11). The remaining task is to prove the compati-
bility conditions for the case of an odd number of nodes. From the first group we get the
following equations

α2j − α2n−2−2j −
(
n− 1

2
− j
)
ᾱ2n−2−2j

κ
= 0,

α2j+1 + α2n−3−2j − (n− 2j − 2)
ᾱ2n−3−2j

2κ
= 0,

j = 0, 1.

The second group leads to the following n− 5 equations:

α2j − α2n−2j−2 −
(
n− 1

2
− j
)
ᾱ2n−2−2j

κ
+

+

(
n− 1

2
− j + 2

)
ᾱ2n−2(j−1)

κ
= 0, j = 2, . . . ,

n− 5

2
,

α2j+1 − α2n−2j−3 − (n− 2j − 2)
ᾱ2n−3−2j

2κ
+

+(n− 2j + 2)
ᾱ2n−2j+1

2κ
= 0, j = 2, . . . ,

n− 7

2
,

αn+2 +
1

2

[
ᾱn
κ

+
3αn+2

2κ2

](
1− 3

4κ2

)−1

+ αn−4 +
7ᾱn+6

2κ
−

−3ᾱn+2

2κ
− 3

4κ

[
αn
κ

+
3ᾱn+2

2κ2

](
1− 3

4κ2

)−1

= 0,

αn−3 −
αn−3 + αn+1

2
− 3ᾱn+5

2κ
− ᾱn−3 + ᾱn+1

2κ
− 3αn+5

2κ2
+

3ᾱn+5

κ
= 0,
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
κ

[
αn
κ

+
3ᾱn+2

2κ2

](
1− 3

4κ2

)−1

+ αn−2 +
5ᾱn+4

2κ
−

−1

2

[
ᾱn
κ

+
3αn+2

2κ2

](
1− 3

4κ2

)−1

= 0.

In a similar way as for the case of an even number of nodes it can be shown, that there
exists a set of complex numbers βj such that the compatibility conditions are satisfied
and the statement of the theorem is true for the case of an odd number of nodes.

The proved theorem plays a crucial role in the theory of convergence of the proposed
method, which we will discuss in Chapter 5.

4.3 Construction of the shape functions

After constructing the general proof of the main interpolation theorem we can apply these
results for practical calculations and construction of shape functions for finite element
approximation. To perform that construction we consider the following interpolation
problem

fn(ϕk) = yk, (4.20)

where yk are arbitrary complex numbers, ϕk ∈ [−π, π] are interpolation nodes, for sim-
plicity we assume, that they are equidistant

ϕk+1 = ϕ1 +
2π k

n− 1
, k = 0, . . . , n− 1,

where n is total number of nodes on ΓAD.
The right hand side in (4.20) can be associated with the unknown displacements

U1, . . . ,Un at the nodes on the joint interface ΓAD, which are written in a complex form.
Due to this fact, after solution of the interpolation problem we will get the unknown
coefficients ak as functions of the unknown displacements Uk. Since the coefficients ak
and āk are connected by complex conjugation it’s necessary to decompose them into real
and imaginary parts

ak = a
(1)
k + i a

(2)
k , āk = a

(1)
k − i a

(2)
k , (4.21)

and we can do the same for the right hand side

Uk = U
(1)
k + iU

(2)
k .
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Finally, by applying Euler’s formula we get the following representation of the interpola-
tion function (4.2)

fn(ϕ) =

N1∑
k=0,2

r
k
2
A

[
a

(1)
k

(
cosϕ

k

2

(
κ+

1

2
(k + 2)

)
− k

2
cos

{
ϕ

(
k

2
− 2

)})
−

−a(2)
k

(
sinϕ

k

2

(
κ+

1

2
(k − 2)

)
− k

2
sin

{
ϕ

(
k

2
− 2

)})
+

+i a
(1)
k

(
sinϕ

k

2

(
κ− 1

2
(k + 2)

)
+
k

2
sin

{
ϕ

(
k

2
− 2

)})
+

+i a
(2)
k

(
cosϕ

k

2

(
κ− 1

2
(k − 2)

)
+
k

2
cos

{
ϕ

(
k

2
− 2

)})]
+

+

N2∑
k=1,3

r
k
2
A

[
a

(1)
k

(
cosϕ

k

2

(
κ+

1

2
(k − 2)

)
− k

2
cos

{
ϕ

(
k

2
− 2

)})
−

−a(2)
k

(
sinϕ

k

2

(
κ+

1

2
(k + 2)

)
− k

2
sin

{
ϕ

(
k

2
− 2

)})
+

+i a
(1)
k

(
sinϕ

k

2

(
κ− 1

2
(k − 2)

)
+
k

2
sin

{
ϕ

(
k

2
− 2

)})
+

+i a
(2)
k

(
cosϕ

k

2

(
κ− 1

2
(k + 2)

)
+
k

2
cos

{
ϕ

(
k

2
− 2

)})]
.

Now the interpolation problem (4.20) can be written as

f (1)
n (ϕk) + i f (2)

n (ϕk) = U
(1)
k + iU

(2)
k ,

or in system notation
F A = U, (4.22)

where F is the interpolation matrix dim(F) = 2n × 2n, A is the vector of unknown
coefficients and U is the vector of unknown displacements.

After solving the system (4.22) and taking into account (4.21), we obtain the unknown
coefficients ak parametrically depending on the unknown displacement Uk, k = 1, . . . , n,
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and thus the displacement field in ΩA can be written as follows

u(r, ϕ,Ui) =

N1∑
k=0,2,...

r
k
2

[
ak(Ui)

(
κ eiϕ

k
2 + e−iϕ

k
2

)
+
k

2
āk(Ui)

(
e−iϕ

k
2 − e−iϕ( k

2
−2)
)]

+

+

N2∑
k=1,3,...

r
k
2

[
ak(Ui)

(
κ eiϕ

k
2 − e−iϕ k2

)
+
k

2
āk(Ui)

(
e−iϕ

k
2 − e−iϕ( k

2
−2)
)]

.

(4.23)
To obtain shape functions NA

i for the analytical element defined over ΩA we substitute
into (4.23) the following relations

Uk = δki,

where k = 1, . . . , n, and i = 1, . . . , n is a number of the shape function NA
i . Thus we

obtain
NA

1 := u(r, ϕ, 1, 0, . . . , 0),

NA
2 := u(r, ϕ, 0, 1, . . . , 0),

...
NA
n := u(r, ϕ, 0, 0, . . . , 1).

Finally we obtain the following representation of the displacement in ΩA

u(r, ϕ,U1, . . . ,Un) =
n∑
k=1

NA
k (r, ϕ)Uk

The functions NA
k (r, ϕ) represent the basis for finite element approximation in the

analytical element over ΩA. These functions build the partition of unity for an arbitrary
number of nodes. Fig. 4.3 and 4.4 illustrate these basis function at the interface ΓAD in
case of 5 and 9 equidistantly distributed nodes, respectively.

Figure 4.3: Shape functions of the analytical element at the interface ΓAD for n = 5
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Figure 4.4: Shape functions of the analytical element at the interface ΓAD for n = 9

As we can see from these figures the shape functions NA
k (r, ϕ) satisfy the interpolation

conditions at the nodes, and the interpolation nodes are given by

ϕk =
{
−π,−π

2
, 0,

π

2
, π
}

for n = 5,

ϕk =

{
−π,−3π

4
,−π

2
,
π

4
, 0,

π

4
,
π

2
,
3π

4
, π

}
for n = 9.

We remark that Fig. 4.3 and 4.4 show only two particular cases of nodes distribution,
which we have chosen by practical reasons to obtain a symmetric mesh in a domain Ω.
But according to the theorem 4.1 the corresponding interpolation problem is uniquely
solvable for an arbitrary nodes distribution and for an arbitrary number of nodes n.

Fig. 4.5 shows the shape functions in the analytical element for five interpolation
nodes. The shape functions are discontinuous during passing the crack faces, but they all
are continuous at the crack tip. This fact completely coincides with expectations from
the mechanical model, because displacement field (3.13) must be continuous in the whole
domain, but passing the crack faces it has a jump. Thus the constructed shape functions
can be used for finite element approximation. As we can see from the Fig. 4.5f these
functions build a partition of unity in the whole domain ΩA.

By choosing different numbers N1 and N2 we can play with the basis functions in (4.2)
to obtain different combinations of polynomials and half integers, for instance Fig. 4.6
shows the case of N1 = 6 and N2 = 0, which corresponds to the classical polynomial
interpolation.

Thus the proposed procedure for construction of the shape functions gives us a flexibil-
ity in applications. Depending from case to case one can choose to have more half-integer
powers in a series, like for the case of small cracked bodies where we cannot be sure that a
fracture can be represented only by a leading coefficient, or if we know that a considered
problem has no singularity we can take only a polynomial part of the basis. In this case
it is not an overkilling to work with the proposed method, because we can easily reduce
computational costs by avoiding refinement.
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(a) NA
1 (r, ϕ) (b) NA

2 (r, ϕ) (c) NA
3 (r, ϕ)

(d) NA
4 (r, ϕ) (e) NA

5 (r, ϕ) (f) Partition of unity

Figure 4.5: Shape functions over the analytical element for n = 5

(a) NA
1 (r, ϕ) (b) NA

2 (r, ϕ)

(c) NA
3 (r, ϕ) (d) NA

4 (r, ϕ)

Figure 4.6: Shape functions over the analytical element for n = 4, N1 = 6, N2 = 0
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4.4 Geometrical properties of a triangulation with

the special element

After solving the interpolation problem at the interface ΓAD and constructing the basis
functions for the analytical element, we can start with a construction of coupling elements.
Coupling elements together with the analytical element and some CST elements will build
a special element, which is introduced into a triangulation (4.1). Since we introduce new
elements into finite element mesh we have to discuss their geometrical properties and
criteria for a refinement. For our settings we can underline three possible strategies for a
refinement:

(i) we refine a whole finite element mesh by a scaling factor without changing a number
of coupling elements;

(ii) we refine a whole finite element mesh by a scaling factor with changing a number
of coupling elements;

(iii) we fix the radius rA of the analytical domain and increase a number of coupling
elements, and refine the standard elements around.

In this section we present some ideas according to these strategies, particularly we
will be more focused on the cases of increasing number of coupling elements. To control
the size of the coupling element we will apply a classical criterion for checking a shape
parameter.

4.4.1 Basic definitions

Following [Schumaker 2007] we will introduce at first some facts about triangles and their
important properties. Let us consider three points v1, v2, v3 in R2 not belonging to one line.
Then the convex hull of these points form a triangle which we write as T : = 〈v1, v2, v3〉.
We call the points vi : = (xi, yi), i = 1, 2, 3 the vertices of T , and denote the three edges
of T by 〈v1, v2〉, 〈v2, v3〉 and 〈v3, v1〉. The area of T is given by

AT =
1

2
det(M),

where

M =

 1 1 1
x1 x2 x3

y1 y2 y3

 .

The area of a triangle is positive if the vertices of T are listed in counterclockwise order,
and it is negative in clockwise order.

We now introduce some ways to measure the size and shape of a triangle.
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Definition 4.1. Given a triangle T , we write |T | for the length of its longest edge, and
ρT for the radius of the largest disk that can be inscribed in T . The center of this disk is

called the incenter of T , and ρT is called the inradius of T . We call the ratio κT : =
|T |
ρT

the shape parameter of T .

For an equilateral triangle, κTE = 2
√

3. Any other triangle has a larger shape param-
eter. Another way to measure the shape of a triangle is in terms of its angles. Let θT be
the smallest angle in T . The size of θT can be used to bound the shape parameter κT by
the following lemma:

Lemma 4.1. For any triangle T ,

1

tan

(
θT
2

) ≤ κT ≤
2

tan

(
θT
2

) ≤ 2

sin

(
θT
2

) . (4.24)

Proof. [Schumaker 2007] Let v be a vertex with angle θT , and let e be an attached edge.
The line connecting the incenter of T to v must bisect the angle at that vertex. Thus,
ρT
|e| ≤ tan

(
θT
2

)
, which immediately implies the first inequality. The second inequality can

be obtained by applying elementary trigonometry.

To avoid too small angles in the coupling elements we will use a simple condition to
bound the shape parameter κT .

Definition 4.2. For any coupling element T the shape parameter κT must be not bigger
than the doubled shape parameter of an equilateral triangle κTE, i.e

κT ≤ 2κTE. (4.25)

If this condition fails, then we should change the geometrical parameters of the cou-
pling element.

4.4.2 Geometrical parameters of the coupling element

To discuss some geometrical details of the construction of the triangulation, let us consider
first only a part of the special element - one coupling element (see Fig. 4.7). Note that
from point of view of the construction of basis functions for the coupling element, the
structure of this element is much more complicated than just three vertices v1, v2, v3 and
part of a circle 〈v3, v1〉. But this sophisticated construction will not influence the geometry
of the coupling element and strategy for refinement.

To apply bounds (4.25) for κT of the coupling elements we should perform some simple
geometrical calculations. Fig. 4.8 shows all geometrical quantities, which are needed for
direct application of (4.25).
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x1

x2 x2

v1

v2

v3

1
Figure 4.7: One coupling element T

x1

x2

|T |

|T |
R

l1

rA lv1

v2

v3

α

O

β

θT
2

θT
2

R

1
Figure 4.8: Geometry of a coupling element

By straight-forward calculations we have:

ρT =

√
(p− |T |)2(p− l1)

p
,

|T | =
√

(rA + l)2 tan2 α + l2,

(4.26)
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where

p =
2
√

(rA + l)2 tan2 α + l2 + 2 rA sinα

2
,

l1 = 2 rA sinα,

and the angle α is defined as follows

α =
ϕ3 − ϕ1

2
, (4.27)

where ϕ3 and ϕ1 are angular coordinates of the vertices v3 and v1 respectively.
The smallest angle of the coupling element is given by

θT
2

=
π

2
− α− arcsin

(
l√

(rA + l)2 tan2 α + l2

)
, (4.28)

and now we can apply the bounds (4.24) to control the quality of refinement of the special
element, and rA represents the radius of the analytical domain.

Finally, the radius R of the greater circle is defined by

R =
rA + l

cosα
. (4.29)

This radius represents the circle on which lay all vertices of the coupling elements not
belonging to the curved edge 〈v3, v1〉.
Remark 2. In fact, because of curved edge 〈v3, v1〉 the inradius ρT of the coupling element
is in reality smaller than calculated. But with increasing number of vertices at the circle
we will have better and better approximation of the curved edge 〈v3, v1〉 by straight edge
〈v∗3, v∗1〉 (dashed line in Fig. 4.8). And moreover, as we can see from Fig. 4.8, the smallest
angle is always belonging to the vertex v2, i.e. existing of a smaller inradius due to curved
edge doesn’t effect the smallest angle.

The formulae (4.26)-(4.29) give general geometrical properties of the coupling element.
For a greater number of coupling elements these formulae must be applied separately for
each of the elements. Now we are ready to discuss a refinement of the special element for
different number of the coupling elements.

4.4.3 Local coordinates of the coupling element

The coupling elements T are described by local coordinates ξ and η. Due to the geomet-
rical shape of the coupling element it is natural to introduce two coordinates: angular
coordinate ξ and linear coordinate η. The angular coordinate ξ serves to get a continuous
coupling through the whole interaction interface ΓAD. The second coordinate η is used as
a linear interpolator to connect the coupling elements with the CST-elements.

For purpose of calculations we need to relate the local coordinates ξ, η with Cartesian
coordinates x1, x2. The goal of this subsection is to construct a mapping from Cartesian
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coordinate system to non orthogonal coordinate system of the coupling element. In Fig.
4.9 we denote by x1, x2 the standard Cartesian coordinates, and by r, ϕ we denote the
classical polar coordinates. The orientation of axes ξ, η is chosen to have a right-handed
coordinate system.

x1

x2

R

1

2

α
ϕ

ξ

η

r

lrA

1

Figure 4.9: Local coordinates (ξ, η) of a coupling element T

We start our construction with the classical definition of a line by two points

x1 − x(1)
1

x
(2)
1 − x(1)

1

=
x2 − x(1)

2

x
(2)
2 − x(1)

2

⇒ x2 =
x1 − x(1)

1

x
(2)
1 − x(1)

1

(
x

(2)
2 − x(1)

2

)
+ x

(1)
2 . (4.30)

By using this definition we will express the equation of a line between points 1 and 2 in

Fig. 4.9. The coordinates
(
x

(1)
1 , x

(1)
2

)
of point 1 can be related with radius R and angle

α as follows 
x

(1)
1 = R cos(k α),

x
(1)
2 = R sin(k α),

(4.31)

where R is given by

R =
rA + l

cosα
,

and k = 1, 3, . . . , 2N − 1 with N describing a number of coupling elements. The formu-
lae (4.31) gives a general rule how to calculate the location of the vertex of the coupling
element not belonging to the curved edge.
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The coordinates
(
x

(2)
1 , x

(2)
2

)
of point 2 are given by definition of the polar coordinate

system: 
x

(2)
1 = rA cosϕ,

x
(2)
2 = rA sinϕ,

(4.32)

in these formulae we took into account, that the radial coordinate r at the circle is equal
to the radius of the analytical domain rA.

After substitution formulae (4.31)-(4.32) into (4.30) we have

x
(1)
2 =

x1 −R cos(k α)

rA cosϕ−R cos(k α)
(rA sinϕ−R sin(k α)) +R sin(k α),

x1 ∈ [rA cosϕ,R cos(k α)] .

The coordinate η ∈ [0, 1] can be related with Cartesian coordinate x1 by linear mapping
with conditions x1(0) = rA cosϕ and x1(1) = R cos(k α) as follows

x1(η) = rA cosϕ+ (R cos(k α)− rA cosϕ)η.

Now we can replace the angular coordinate ϕ by ξ. And finally we have the following
mapping between Cartesian coordinates and coordinates of the coupling element

x1 = rA cos ξ + (R cos(k α)− rA cos ξ)η, η ∈ [0, 1],

x2 =
x1 −R cos(k α)

rA cos ξ −R cos(k α)
(rA sin ξ −R sin(k α)) +R sin(k α), ξ ∈ [−π, π].

(4.33)

The inverse transformation can be explicitly calculated from above relations.

4.4.4 Global refinement with a special element

In this section we consider a way how to refine a triangulation with a special element
in a case of an increasing number of coupling elements. In all refinements we will use
equidistant distribution of vertices at the interface ΓAD to preserve the symmetry of the
triangulation. Without loss of generality for all examples we let rA = 1. Since we are
considering a fixed radius rA, there are only two parameters remain which will influence
a shape of triangulation: the length l and the angle α. The angle can be expressed in
terms on number of nodes n on the arc [0, π

2
], as follows

α =
π

4(n+ 1)
,

this formula comes from the fact, that we always have the nodes at ϕ = 0 and ϕ = π
2
,

and from the definition of angle α according to Fig. 4.8.
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To start an investigation of triangulation, let us use the length l = rA, and this
relation can be changed if condition (4.25) fails. According to formulae (4.26)-(4.29) the
geometrical parameters for n = 0 are

α =
π

4
l1 =

√
2

|T | =
√

5 R = 2
√

2

ρT =
3

2
√

5 +
√

2
κT =

√
5

3
(2
√

5 +
√

2) ≈ 4.3874

θT
2

=
π

4
− arcsin

(√
5

5

)
≈ 18.435°

(4.34)

and condition (4.25) is satisfied

κT ≤ 4
√

3 ≈ 6.9282,

and the triangulation (Fig. 4.10) with such geometrical parameters can be applied for
calculation. The total number of elements in the special element in such triangulation is
13: 1 analytical element, 4 coupling elements and 8 CST.

Let us increase the number of nodes on the circle and consider now n = 1. The
geometrical parameters of such triangulation are

α =
π

8
l1 = 2 sin

(π
8

)
|T | =

√
4 tan

(π
8

)2

+ 1 R =
2

cos
(
π
8

)
ρT ≈ 0.2824 κT ≈ 4.5975

θT
2
≈ 17.1392°

(4.35)

and condition (4.25) is satisfied

κT ≤ 4
√

3 ≈ 6.9282,

and the triangulation (Fig. 4.11) with such geometrical parameters can be applied for
calculation. The total number of elements in the special element in such triangulation
is 22: 1 analytical element, 8 coupling elements and 13 CST. As we can see from Fig.
4.11 only the special element and the first layer of ordinary triangles around the special
element must be handled with special refinement. The rest part of the triangulation can
be treated as usual.
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x1

x2

α

βθT
2

l

1Figure 4.10: Four coupling elements

After adding one more node, i.e. now n = 2, we have

α =
π

12
l1 = 2 sin

( π
12

)
|T | =

√
4 tan

( π
12

)2

+ 1 R =
2

cos
(
π
12

)
ρT ≈ 0.2052 κT ≈ 5.5293

θT
2
≈ 13.1867°

(4.36)

and condition (4.25) is satisfied

κT ≤ 4
√

3 ≈ 6.9282,

and the triangulation (Fig. 4.12) with such geometrical parameters can be applied for
calculation. The total number of elements in the special element in such triangulation is
34: 1 analytical element, 12 coupling elements and 21 CST. By increasing a number of
coupling elements, like in Fig. 4.12, we can follow to two strategies:

• perform a refinement of the triangulation in the bigger area around the special
element;
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1Figure 4.11: Eight coupling elements

• perform a refinement only in few normal triangles and come to certain “uniform
size” of triangles;

In this study we will follow the second strategy.
After adding one more node, i.e. now n = 3, we have

α =
π

16
l1 = 2 sin

( π
16

)
|T | =

√
4 tan

( π
16

)2

+ 1 R =
2

cos
(
π
16

)
ρT ≈ 0.1624 κT ≈ 6.6263

θT
2
≈ 10.4438°

(4.37)

and condition (4.25) is satisfied

κT ≤ 4
√

3 ≈ 6.9282,

and the triangulation (Fig. 4.13) with such geometrical parameters can be applied for
calculation. The total number of elements in the special element in such triangulation is
46: 1 analytical element, 16 coupling elements and 29 CST.
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1Figure 4.12: Twelve coupling elements

For n = 4, we have

α =
π

20
l1 = 2 sin

( π
20

)
|T | =

√
4 tan

( π
20

)2

+ 1 R =
2

cos
(
π
20

)
ρT ≈ 0.1346 κT ≈ 7.7926

θT
2
≈ 8.5765°

(4.38)

and now condition (4.25) fails

κT > 4
√

3 ≈ 6.9282,

and the triangulation with such geometrical parameters cannot be applied for calculation.
To overcome this problem we will change the length l. For the next calculations we take
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x1

x2

1Figure 4.13: Sixteen coupling elements

l = 1
2
rA, and now for n = 4, we have

α =
π

20
l1 = 2 sin

( π
20

)
|T | =

√
9 tan

( π
20

)2

+ 1 R =
3

2 cos
(
π
20

)
ρT ≈ 0.1169 κT ≈ 4.7315

θT
2
≈ 16.4148°

(4.39)

and condition (4.25) is satisfied now

κT ≤ 4
√

3 ≈ 6.9282,

and the triangulation (Fig. 4.14) with such geometrical parameters can be applied for
calculation. The total number of elements in the special element in such triangulation is
79: 1 analytical element, 20 coupling elements and 58 CST.

Additional nodes at the boundary of the special element (bold square in Fig. 4.14)
are placed equidistantly with step size equal to rA, and can be easily calculated.
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x1

x2

1Figure 4.14: Twenty coupling elements

For n = 5, we have

α =
π

24
l1 = 2 sin

( π
24

)
|T | =

√
9 tan

( π
24

)2

+ 1 R =
3

2 cos
(
π
24

)
ρT ≈ 0.1018 κT ≈ 5.2765

θT
2
≈ 14.0519°

(4.40)

and condition (4.25) is satisfied

κT ≤ 4
√

3 ≈ 6.9282,

and the triangulation (Fig. 4.15) with such geometrical parameters can be applied for
calculation. The total number of elements in the special element in such triangulation is
107: 1 analytical element, 24 coupling elements and 82 CST.

Additional nodes at the boundary of the special element (bold square in Fig. 4.15) are
placed with step size related to rA. For instance, the upper bound of the special element
has additional nodes at: −rA,− rA

2
, 0, rA

2
, rA and vertical coordinate is taken equal 2 rA.
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x1

x2

1Figure 4.15: Twenty four coupling elements

For n = 6, we have

α =
π

28
l1 = 2 sin

( π
28

)
|T | =

1

2

√
9 tan

( π
28

)2

+ 1 R =
3

2 cos
(
π
28

)
ρT ≈ 0.0903 κT ≈ 5.8470

θT
2
≈ 14.0519°

(4.41)

and condition (4.25) is satisfied

κT ≤ 4
√

3 ≈ 6.9282,

and the triangulation (Fig. 4.16) with such geometrical parameters can be applied for
calculation. The total number of elements in the special element in such triangulation is
119: 1 analytical element, 28 coupling elements and 89 CST.

Additional nodes at the boundary of the special element (bold square in Fig. 4.16)
are placed equidistantly with step size related to rA

2
.
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x2

1Figure 4.16: Twenty eight coupling elements

Fig. 4.17 shows an increase of the number of elements in the special element with
respect to a total number of nodes at the circle.

Figure 4.17: Increase of elements in the special element

As we can see, the increase goes close to linear law: for six times more nodes we have
almost ten times more elements. Of course, computational costs for the special element
are usually higher than for ordinary finite elements, but these computations must be done
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only in one element and not for all problems we should use very dense triangulation in the
special element. Additionally, all of the refinements which we have shown in this section
can be used together with scaling of the whole triangulation.

Finally we introduce the following inequalitiestan

π
2
− π

4(n+ 1)
− arcsin

 l√
(rA + l)2 tan2 π

4(n+1)
+ l2

−1

≤ κT,

κT ≤ 2

tan

π
2
− π

4(n+ 1)
− arcsin

 l√
(rA + l)2 tan2 π

4(n+1)
+ l2

−1

,

where the bounds for the shape parameter κT are expressed in terms of the number of
nodes n, the radius rA, and length l.

4.4.5 Numbering of vertices

Another important aspect of the finite element procedure is a numbering of nodes in a
finite element mesh. The goal of numbering is to obtain elements with smallest possible
difference in numbers of its vertices. Such a numbering will lead to a smaller band in a
global stiffness matrix. Another important problem which is related to the numbering
is the condition number of the global stiffness matrix, which is on of the key aspect of
stability. By choosing different strategies for the numbering one can obtain very different
condition numbers.

At the moment we are interested in studying the quality of the proposed method,
but not in the smallest possible computational costs. Therefore we consider the following
strategy for numbering:

1. we create a triangulation for a cracked domain with a special element located at the
origin of a coordinate system;

2. we start our numbering from the special element.

For normal triangles Tj we go around its boundary in counterclockwise order starting
from one arbitrary vertex. After we get the list with vertices for each triangle in the
triangulation. The lists for analytical elements and for coupling elements have a more
complicated structure.

To illustrate this strategy let us consider the triangulation with eight coupling elements
shown in Fig. 4.11. We start the numbering procedure with the vertex at (rA, 0), and we
continue counterclockwise.

In this example we continue with counterclockwise numbering even after the special
element. Such strategy gives advantages in the structure of a global stiffness matrix, but
it works, of course, only for rectangular domains. For more complicated shape we will use
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1Figure 4.18: An example of numbering of a triangulation with the special element

counterclockwise numbering in the special element, and after we will continue with the
left lower node of a body (Fig. 4.19). In this case we have some disturbance in structure
of the matrix, but it will occur only in connection with few triangles around the special
element.

According to Fig. 4.19 we can create a list with triangles and their vertices for the
special element (see the left Table 4.1). A list for all other normal triangles can be done in
the same manner, but starting from the left lower corner. Additionally to the list of normal
triangles we should create and store the list of coupling and analytical elements (see the
right Table 4.1). A big number of vertices belonging to each of special and analytical
elements are explained by a complicated construction of the interpolation functions for
these elements. For our consideration here it is important to pay attention to this fact
and store separately a list for normal triangles and for the modified elements, or with
some addition markers for the modified elements.

Remark 3. The strategy with numbering starting from the special element fails in a case
of several special elements in a triangulation. In that case one can start from a arbitrary
vertex in a triangulation (typically a lower left node of a body), but numbering of each
special element must be done continuously to avoid disturbance in a global stiffness matrix.
We illustrate this case in Fig. 4.20, but we will not go into details.
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Ti Vertices
1 1,23,10
2 2,10,12
3 10,11,12
4 3,12,13
5 4,13,15
6 13,14,15
7 5,15,16
8 6,17,18
9 7,18,20
10 18,19,20
11 8,20,21
12 9,21,23
13 21,22,23

T Vertices
A 1,2,3,4,5,6,7,8,9
T1 1,2,3,4,5,6,7,8,9,10
T2 1,2,3,4,5,6,7,8,9,12
T3 1,2,3,4,5,6,7,8,9,13
T4 1,2,3,4,5,6,7,8,9,15
T5 1,2,3,4,5,6,7,8,9,18
T6 1,2,3,4,5,6,7,8,9,20
T7 1,2,3,4,5,6,7,8,9,21
T8 1,2,3,4,5,6,7,8,9,23

Table 4.1: List for the special element: normal triangles (left), coupling and analytical
elements (right)
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4.4.6 Algorithm for triangulation

Now we can shortly summarise our considerations from this section as a draft of an
algorithm for construction of a triangulation with the special element:

1. define radius rA;

2. decide how many coupling element we want to have;

3. make an assumption about the length l;

4. check the shape parameter κT;

5. calculate coordinates of vertices in the special element;
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6. perform the numbering of the special element;

7. create a triangulation of the rest part of domain.

4.5 Shape functions for coupling elements

The construction of shape functions for coupling elements is realised in several steps, at
first we restrict the shape functions of an analytical element to the interface ΓAD and
replacing the coordinate ϕ by the coordinate ξ, i.e. we have

N̂T
1 := NA

1 (rA, ξ),

N̂T
2 := NA

2 (rA, ξ),
...

N̂T
n := NA

n (rA, ξ).

In the second step we multiply each of the functions N̂T
k , k = 1, . . . , n by a linear interpo-

lator η ∈ [0, 1] as we have introduced it previously, and add one more linear function to
a basis. Finally we obtain

NT
1 := NA

1 (rA, ξ)(1− η),

NT
2 := NA

2 (rA, ξ)(1− η),
...

NT
n := NA

n (rA, ξ)(1− η),

NT
n+1 := η.

The obtained shape functions are presented in Fig. 4.21 for the case of five nodes at the
interface ΓAD. As we can see by the proposed construction we obtain the desired con-
tinuity, since the shape functions are continuous through the whole interaction interface
between the analytical and the finite element solution, and they are linearly connected to
the standard elements.

Fig. 4.21g shows that the constructed shape functions built a partition of unity over
the coupling elements. Thus the proposed procedure for coupling assures the desired
continuity, and the constructed shape functions NA

k , k = 1, . . . , n and NT
i , i = 1, . . . , n+ 1

satisfy all the requirements for shape functions in the finite element method.

Remark 4. We would like to underline, that the proposed construction is only an example
of possible ways how to obtain a global C0 continuity of solution. A proposed scheme for
the refinement is a possible idea which can be easily realised in practice, but of course in
real application one can find out that we need a more elegant method for the refinement.
Moreover, by this construction it’s possible to ask for higher order continuity between two
solutions, but this task is out of scope of this thesis.
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(a) NT
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(g) Partition of unity

Figure 4.21: Shape functions over the coupling elements for n = 5
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Chapter 5

Numerical analysis of the coupled
method

The problems of linear elasticity, which we have introduced in Chapter 2, are described by
system of partial differential equations (2.18). Following the book of Michlin [Michlin 1970]
we introduce in this section some basics ideas of direct and variational methods of math-
ematical physics. In applications our goal is to calculate (at least approximately) the
physical quantities of interest, which are unknown displacements for the linear elasticity
problems. For many problems the best choice could be the so-called direct methods.
According to Sobolev [Sobolev 1988] direct methods are the methods of approximate so-
lution for partial differential equations or integral equations, which reduce these problems
to finite systems of algebraic equations.

In many cases of applications of direct methods the problem of integration of a differ-
ential equation can be successfully replaced by a problem of finding a function which gives
a minimal value to a certain integral. The problems of such types are called variational
problems. Thus in many cases the original problem of integration of a differential equa-
tion, or so-called a strong problem, can be replaced by a variational or so-called the weak
problem. Methods which are based on this replacement are called variational methods.
The most important method from the scope of variational methods is the method known
in engineering literature as the energetic method.

Many of the direct methods can be applied more efficiently not directly to a differential
equation, but to an equivalent variational problem. For example it can be applied to the
well-known Ritz method, which is a method to approximate the solutions of variational
problems. This fact shows a close connection between direct and variational methods.

Another motivation for the variational methods comes from boundary value problems
with singularities. Because in this case can happen that the strong solution of a differential
equation doesn’t exist, like for example in the case of an interface problem: if we consider
an interface between two material, then the stresses have jump at the interface.

Historically the first variational method was formulated as the so-called “Dirichlet
principle”. According to this principle among all functions, which have a given value at
the boundary of a domain Ω, the function which gives a minimal value to the “Dirichlet
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integral” ∫∫
Ω

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dxdy

is a harmonic function in Ω.
The Dirichlet principle was widely used by Riemann in his work on complex function

theory. In the eyes of Riemann the fact of existence of a function which minimizes the
Dirichlet integral was obvious. But later Weierstraß has given a critical remark, and on
a simple example he has shown that the minimal value of the integral not always can be
reached. Some time later Hadamard has shown another example of a function, which is
a solution of the Dirichlet problem in Ω (in the classical sense), but the Dirichlet integral
for that function is divergent.

Because of these examples the Dirichlet principle was forgotten for a long time, and
appears again only in works of Hilbert. Hilbert has shown, that problems of the Dirichlet
principle are not related to “a small incorrectness” in its formulation, but in much deeper
condition, which is called now by completeness of a metric space.

The next outstanding event was the creation of the Ritz method by a German engineer
in 1909 [Ritz 1909]. This method was particularly interesting for people from applied
sciences, because it offers a suitable tool, which was not available before. In that time a
lot of papers with applications of the Ritz method to problems of mathematical physics
were published. Due to its simplicity the Ritz method became the basic method for
direct variational methods. Even the finite element method is a particular case of the
Ritz method for a certain choose of a basis.

Another very important direct method is the Bubnov-Galerkin method, which was pro-
posed by Bubnov [Bubnov 1913], and later extended by Galerkin [Galerkin 1915]. Bubnov
has shown that ideas of the Ritz method can be applied directly to a differential equa-
tion, and it’s not necessary to write at first an energy functional. For linear problems the
resulting system of the Galerkin method is equal to a system which can be obtained by
the Ritz method. The finite element method can be obtained by choosing a certain basis
from both of these methods.

Due its more general formulation the Galerkin method is usually considered as the
basis for the finite element method. The finite element method is the most popular
numerical method for solving boundary value problems in the computational mechanics.
Among the other numerical methods, like for instance boundary element method, finite
difference method, etc., the finite element method historically became very popular among
engineers in applied fields of science.

Originally it was introduced by Courant in his paper [Courant 1943], but at that time
the importance of his results was ignored by other scientists. Later, in the fifties the
method was re-invented by engineers related to the names of Argyris [Argyris 1954-1955],
Turner, Clough, Martin and Topp [Turner et al. 1956]. The name “finite element method”
was proposed by Clough [Clough 1960]. After works of Oden [Oden 1972], and Zienkiewicz
[Zienkiewicz 1971] in the seventies, the finite element method finally became the most
popular numerical method for applied problems.
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In this chapter we introduce the important foundation of the Galerkin method, and the
finite element method. We start from some necessary tools of functional analysis, which
are important for a further discussion about the convergence of the proposed method. In
the end of this chapter we describe the finite element with holomorphic functions, which
is a consequence of the ideas for coupling, which we have introduced in Chapter 3.

5.1 Preliminaries from functional analysis

In the theory of the finite element method Sobolev spaces play a very important role.
Therefore in this section we will give some basic information about them. According to the
purpose of this section we will list only a few definitions, and for more information we refer
to [Adams 1975], [Adams & Fournier 2003], [Hunter & Nachtergaele 2001]. Throughout
this thesis we will work only with real functional spaces.

Sobolev spaces are Banach spaces of functions whose weak derivatives belong to Lp

spaces. We define Sobolev spaces of functions whose domain is an open subset Ω of Rn,
equipped with n-dimensional Lebesgue measure. Lp(Ω) denotes the space of Lebesgue
measurable functions f : Ω→ R whose pth power are integrable.

Definition 5.1. A test function ϕ : Ω→ R on an open subset Ω of Rn is a function with
continuous partial derivatives of all orders whose support is a compact subset of Ω. We
denote the set of test functions on Ω by C∞0 (Ω).

Definition 5.2. Let m be a positive integer, 1 ≤ p ≤ ∞, and Ω an open subset of Rn.
The Sobolev space Wm,p(Ω) consists of all functions f : Ω → R such that ∂αf ∈ Lp(Ω)
for all weak partial derivatives of order 0 ≤ |α| ≤ m. We define a norm on Wm,p(Ω) by

‖f‖m,p,Ω =

 ∑
0≤|α|≤m

∫
Ω

|∂αf(x)|pdx

 1
p

when 1 ≤ p <∞, and by

‖f‖m,∞,Ω = max
0≤|α|≤m

{
ess. sup
x∈Ω

|∂αf(x)|
}

when p =∞.

For p = 2, corresponding to the case of square integrable functions it’s common to
write Wm,2(Ω) = Hm(Ω), but in this thesis we will always use the classical notation
Wm,p(Ω) for all values of p. The space Wm,p(Ω) is a Banach space, and Wm,2(Ω) is a
Hilbert space.

We will also use the semi-norms

|f |m,p,Ω =

∑
|α|=m

∫
Ω

|∂αf(x)|pdx

 1
p
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when 1 ≤ p <∞, and by

|f |m,∞,Ω = max
|α|=m

{
ess. sup
x∈Ω

|∂αf(x)|
}

when p =∞.
Next, we define a Sobolev space of functions which “vanish on the boundary of Ω”.

Definition 5.3. The closure of C∞0 (Ω) in Wm,p(Ω) is denoted by

Wm,p
0 (Ω) = C∞0 (Ω).

Informally, we can think of Wm,p
0 (Ω) as the Wm,p(Ω)-functions whose derivatives of

an order less than or equal m− 1 vanish on the boundary ∂Ω of Ω. Compactly supported
functions are dense in Wm,p(Rn), so that Wm,p

0 (Rn) = Wm,p(Rn).

5.2 Abstract variational problems

In this section following [Ciarlet 1978] we introduce a basic information about abstract
variational problems and some theory around them. In the end we give a variational
formulation of the Lamé equation (2.18), which we have introduced in Chapter 2.

Let there be given a normed vector space V with norm ‖ · ‖, a continuous bilinear
functional a(·, ·) : V ×V → R, a continuous linear functional f : V → R and a non empty
subset U of the space V . With these data we associate an abstract minimization problem:
Find an element u such that

u ∈ U and J(u) = inf
v∈U

J(v), (5.1)

where the functional J : V → R is defined by

J : v ∈ V → J(v) =
1

2
a(v, v)− f(v).

The next theorem sets up the existence and uniqueness properties of the solution of this
problem. We will leave this theorem without proof, for more details we refer again to
[Ciarlet 1978].

Theorem 5.1. Let there be given a normed vector space V with norm ‖ · ‖, a continuous
bilinear functional a(·, ·) : V × V → R, a continuous linear functional f : V → R and a
non empty subset U of the space V . Additionally, we assume that

(i) the space V is complete,

(ii) U is a closed convex subset of V ,

(iii) the bilinear functional a(·, ·) is symmetric and V -elliptic, in the sense that

∃α > 0, α‖v‖2 ≤ a(v, v), ∀v ∈ V.
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Then the abstract minimization problem (5.1) has one and only one solution.

By this theorem, each problem has one and only one solution if the space V is complete,
the subset U of V is closed and convex, and the bilinear form is V -elliptic, continuous,
and symmetric.

Let us now give equivalent formulations of the problem (5.1).

Theorem 5.2. An element u is the solution of the abstract minimization problem (5.1)
if and only if it satisfies the relations

a(u, v − u) ≥ f(v − u), u ∈ U and ∀ v ∈ U,

in the general case, or

a(u, v) ≥ f(v), a(u, u) = f(u), u ∈ U and ∀ v ∈ U,

if U is a closed convex cone with vertex 0, or

a(u, v) = f(v), ∈ U and ∀ v ∈ U, (5.2)

if U is a closed subspace.

Now we introduce a variational formulation of a linear elasticity problem. Let Ω be a
bounded open connected subset of R3 with a Lipschitz-continuous boundary Γ. We define
the space

V = U =
{

v = (v1, v2, v3) ∈
(
W 1,2(Ω)

)3
; vi = 0, on Γ0, 1 ≤ i ≤ 3

}
, (5.3)

where Γ0 is a dγ-measurable subset of Γ, with a strictly positive dγ-measure. The space
V is equipped with the norm

v = (v1, v2, v3)→ ‖v‖1,2,Ω =

(
3∑
i=1

‖vi‖2
1,2,Ω

) 1
2

.

For any v = (v1, v2, v3) ∈ (W 1,2(Ω))
3

let

εij(v) = εji(v) =
1

2
(∂jvi + ∂ivj) , 1 ≤ i, j ≤ 3,

and

σij(v) = σji(v) = λ

(
3∑

k=1

εkk(v)

)
δij + 2µ εij(v), 1 ≤ i, j ≤ 3, (5.4)

where δij is the Kronecker’s symbol, and λ and µ are two constants which are assumed
to satisfy λ > 0, µ > 0. We define the bilinear functional as follows

a(u,v) =

∫
Ω

3∑
i,j=1

σij(u)εij(v)dx =

∫
Ω

{
λ div u div v + 2µ

3∑
i,j=1

εij(u)εij(v)

}
dx, (5.5)
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and the linear functional

q(v) =

∫
Ω

f · vdx+

∫
Γ1

g · vdγ =

∫
Ω

3∑
i=1

fividx+

∫
Γ1

3∑
i=1

gividγ, (5.6)

where f = (f1, f2, f3) ∈ (L2(Ω))
3

and g = (g1, g2, g3) ∈ (L2(Γ1))
3
, with Γ1 = Γ \ Γ0 are

given functions.
These bilinear and linear functionals are continuous over the space V. The V-

ellipticity can be proved by using Korn’s inequality. Thus we conclude that there exists
a unique function u ∈ V which minimizes the functional

J(v) =
1

2

∫
Ω

{
λ (div v)2 + 2µ

3∑
i,j=1

(εij(v))2

}
dx−

∫
Ω

f · vdx+

∫
Γ1

g · vdγ

 (5.7)

over the space V, or equivalently, which is such that∫
Ω

3∑
i,j=1

σij(u)εij(v)dx =

∫
Ω

f · vdx+

∫
Γ1

g · vdγ ∀v ∈ V. (5.8)

Equations (5.3), (5.5) and (5.6) represent the variational problem which is associated
with the Lamé equation (2.18). The body Ω̂ cannot move along Γ0, and along Γ1, surface
forces of density g are given. In addition, a volume force, of density f , is prescribed inside
the body Ω̂.

The strain tensor is defined by ε(u), and the stress tensor is defined by σ(u), which
we have introduced in Chapter 2. Hooke’s law (2.11) is represented now by the linear
equation (5.4). The constants λ and µ are still Lamé constants.

Variational equation (5.8) represents the principle of virtual work, valid for all kine-
matically admissible displacements v, i.e. which satisfy the boundary condition v = 0 on
Γ0.

The functional J of (5.7) is the total energy of the body. It is the sum of the strain
energy:

1

2

∫
Ω

{
λ (div v)2 + 2µ

3∑
i,j=1

(εij(v))2

}
dx,

and of the potential energy of the exterior forces:

−

∫
Ω

f · vdx+

∫
Γ1

g · vdγ

 .
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5.3 Fundamentals of the finite element method

Since the finite element method is a special case of the Galerkin method, we start this
section with a short reminder on the general idea of application of the Galerkin method
to abstract variational problems given by equation (5.2). The method consists in formu-
lation of such problems in finite dimensional subspaces of the space V . For each finite
dimensional subspace Vh of the space V we define the discrete problem: Find uh ∈ Vh
such that

a(uh, vh) = f(vh), ∀vh ∈ Vh. (5.9)

By the Lax-Milgram lemma (see, for example [Ciarlet 1978]) each of these discrete prob-
lems has a unique solution uh, which is called a discrete solution.

Let the set of functions ϕ1, ϕ2, . . . , ϕn be a basis in the space Vh. Then the function

u
(n)
h =

n∑
k=1

a
(n)
k ϕk

is a solution of the discrete problem (5.9), and the coefficients ak must be determined
through the orthogonality condition, which leads to the following linear system of equa-
tions

n∑
k=1

(aϕk, ϕj) ak = (f, ϕj) , j = 1, 2, . . . , n,

whose matrix is always invertible, since the bilinear functional, being assumed to be V -
elliptic, is a priori Vh-elliptic. For the elasticity problems, the matrix (aϕk, ϕj) and the
vector (f, ϕj) are called the stiffness matrix and the load vector, respectively.

According to (5.5) the coefficients (aϕk, ϕj) are integrals of the form

(aϕk, ϕj) =

∫
Ω

{
λ divϕk divϕj + 2µ

3∑
i,j=1

εij(ϕk)εij(ϕj)

}
dx,

and these coefficients are zero if the measure of the intersection of supports of the basis
functions ϕk and ϕj is zero.

During next subsections we introduce shortly the basic ideas of the finite element
method. In this thesis we work with the most classical version of the finite element
method, therefore all general ideas will be remained according to [Ciarlet 1978] with
certain extension to our settings. The choice of the classical version of the finite element
method is based on two facts: on one hand the method is well-established for purposes of
practical use, and on another hand a serious theoretical basis has been developed.

5.3.1 Three basic aspects of the finite element method

The finite element method, in its simplest form, is a specific process of constructing
subspaces Vh, which are called finite element spaces. Let us recall three basic aspects of
this construction.
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(FEM 1) The first aspect is that a triangulation Fh is established over the set Ω̄, i.e. the set
Ω̄ is subdivided into a finite number of subsets K, called finite elements, in such a
way that the following properties are satisfied:

(i) Ω̄ = ∪
K∈Fh

K.

(ii) For each K ∈ Fh the subset K is closed and the interior
◦
K is non-empty.

(iii) For each distinct K1,K2 ∈ Fh, one has
◦
K1 ∩

◦
K2 = ∅.

(iv) For each K ∈ Fh the boundary ∂K is Lipschitz-continuous.

(v) Any face of a finite element K1 is either a face of another finite element K2, in
which case the finite elements K1 and K2 are said to be adjacent, or a portion
of the boundary Γ of the set Ω.

Once such a triangulation Fh is established over the set Ω̄, one defines a finite element
space Xh, which is a finite-dimensional space of functions defined over the set Ω̄. Let vh
be a set of all basis functions defined over the set Ω̄. We define the local spaces PK of the
basis functions over the finite elements K ∈ Fh by the restrictions vh|K of the functions
vh ∈ Xh as follows

PK =
{
vh|K : vh ∈ Xh

}
.

(FEM 2) The second basic aspect of the finite element method is that the spaces PK, K ∈ Fh
contain functions which provide a unisolvence property over K. We will provide in
the next section the meaning of the unisolvence property.

(FEM 3) The third basic aspect of the finite element method is that there exists at least one
“canonical” basis in the space Vh whose corresponding basis functions have supports
which are as “small” as possible.

Remark 5. The (FEM 2) was originally formulated by [Ciarlet 1978] in a bit more restric-
tive way as follows:

• The second basic aspect of the finite element method is that the spaces PK, K ∈ Fh
contain polynomials, or, at least, contain functions which are “close to” polynomials.

We have introduced it in more general way based on the “close to” remark, and as
we will see later on, the more general second aspect allows us to extend results of P.G.
Ciarlet to the case of functions different from polynomial by studying properties which
have to be satisfied by these functions.

Finally we will call the finite element method which is introduced according to (FEM
1) – (FEM 2) the conforming finite element method.
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5.3.2 General properties of finite elements and finite element
spaces

In (FEM 1) we have introduced the definition of finite elements from geometrical point of
view. Let us now introduce a more general definition of a finite element in Rn as a triple
(K, P,Σ) where:

(i) K is a closed subset of Rn with a non empty interior and a Lipschitz-continuous
boundary;

(ii) P is a space of real-valued functions defined over the set K;

(iii) Σ is a finite set of linearly independent continuous linear functionals ϕi, 1 ≤ i ≤ N ,
defined over the space P .

By definition, it is assumed that the set Σ is P -unisolvent in the following sense: given
any real scalars αi, 1 ≤ i ≤ N , there exists a unique function p ∈ P which satisfies

ϕi(p) = αi, 1 ≤ i ≤ N.

Consequently, there exist functions pi ∈ P, 1 ≤ i ≤ N , which satisfy

ϕi(pi) = δij, 1 ≤ j ≤ N.

Since we have

p =
N∑
i=1

ϕi(p)pi, ∀p ∈ P.

This implies that the space P is finite-dimensional and that dimP = N .
The linear functionals ϕi, 1 ≤ i ≤ N , are called the degrees of freedom of the finite

element, and the functions pi, 1 ≤ i ≤ N , are called the basis functions of the finite
element.

Remark 6. The P -unisolvence of the set Σ is equivalent to the fact that the N continuous
linear functionals ϕi form a basis in the dual space of P . As a consequence, one may view
the bases (ϕi)

N
i and (pi)

N
i as being dual bases, in the algebraic sense.

Since our main interest are applications to linear elasticity, the degrees of freedom for
these problems typically of the following types:

p → p(a0
i ),

p → (Dp)(a1
i )ξ

1
ik,

p → (D2 p)(a2
i )(ξ

2
ik, ξ

2
il),

(5.10)

where the points ari , r = 0, 1, 2, belong to the finite element, and the (non-zero) vectors
ξ1
ik, ξ

2
ik, ξ

2
il are either constructed from a geometry of the finite element or fixed vectors of

Rn. The points ari , r = 0, 1, 2, are called the nodes of the finite element.
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Given a finite element (K, P,Σ), and given a function v = K→ R, sufficiently smooth
so that the degrees of freedom ϕi(v), 1 ≤ i ≤ N , are well defined, let

Πv =
N∑
i=1

ϕi(v)pi

denote the P -interpolant of the function v, which is unambiguously defined since the set
Σ is P -unisolvent. Indeed, the P -interpolant, also denoted ΠKv, is equivalently charac-
terized by the conditions

Πv ∈ P, and ϕi(Πv) = ϕi(v), 1 ≤ i ≤ N.

Whenever the degrees of freedom are of the form (5.10), let s denote the maximal
order of derivatives occurring in the definition of the set Σ. Then, for all elements which
we will use here, the inclusion P ⊂ Cs(K) holds. Consequently, the domain dom Π of the
P -interpolation operator Π is the space

dom Π = Cs(K).

It follows immediately that over the space P ⊂ dom Π, the interpolation operator reduces
to the identity, i.e.

Π p = p, ∀ p ∈ P.
Next important step in the finite element methods is a description of a given family

(K, PK,ΣK) of finite elements. For practical purposes it’s very beneficial if one can
describe a family of finite elements by using a certain reference element from the family.
This idea leads to affine families of finite elements. We give here only the definition, and
for all of the details we again refer to [Ciarlet 1978].

Definition 5.4. Two finite elements (K̂, P̂, Σ̂) and (K,P,Σ), with degrees of freedom of
the form (5.10), are said to be affine-equivalent if there exists an invertible affine mapping:

F : x̂ ∈ Rn → F (x̂) = B x̂+ b ∈ R,

such that the following relations hold:

K = F (K̂),

P =
{
p : K → R; p = p̂ · F−1, p̂ ∈ P̂

}
,

ari = F (âri ), r = 0, 1, 2,

ξ1
ik = B ξ̂1

ik, ξ2
ik = B ξ̂2

ik, ξ2
il = B ξ̂2

il,

whenever the nodes ari , resp. âri , and vectors ξ1
ik, ξ

2
ik, ξ

2
il, resp. ξ̂1

ik, ξ̂
2
ik, ξ̂

2
il, occur in the

definition of the set Σ, resp. Σ̂.
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The next step is a description of the construction of a finite element space from the
data of finite elements (K, PK,ΣK). For the sake of simplicity we restrict ourselves to
the case where the boundary of the domain Ω̄ is polygonal, or can be approximated with
arbitrary accuracy by polygonal elements K. From the conditions (FEM 1) we can state
that the sets of degrees of freedom of adjacent finite elements have to be related as follows:
whenever (Kl, PKl

,ΣKl
) with ΣKl

=
{
p(ali), 1 ≤ i ≤ Nl

}
, l = 1, 2 are two adjacent finite

elements, then (
N1⋃
i=1

{
a1
i

})⋂
K2 =

(
N2⋃
i=1

{
a2
i

})⋂
K1.

We define the set
Nh =

⋃
K∈Fh

NK,

where, for each finite element K ∈ Fh, NK denotes the set of nodes. For each b ∈ Nh, we
let Kλ, λ ∈ Λ(b), denote all those finite elements to which belongs the node b, Λ(b) is the
set of polygons with a common vertex b. Then the associated finite element space Xh is
the subspace of the product space

∏
K∈Csh

PK, defined by

Xh =

{
v = v(K)K∈Fh ∈

∏
K∈Fh

; ∀ b ∈ Nh,∀λ, µ ∈ Λ(b), vKλ(b) = vKµ(b)

}
.

Therefore a function in the space Xh is uniquely determined by the set of functional
values at the vertices of the triangulation

Θh = {v(b), b ∈ Nh} ,

which is called the set of degrees of freedom of the finite element space.
When the degrees of freedom of all finite elements are of some of the types (5.10), the

degree of freedom of the finite element space are of some of the following types:

v → v(b0
j),

v → (D v)(b1
j)η

1
jk,

v → (D2 v)(b2
j)
(
η2
jk, η

2
jl

)
,

(5.11)

where the points brj , r = 0, 1, 2, called the nodes of the finite element space, make up a set
which is generally denoted Nh.

If we write the set Σh as

Σh = {ϕj,h, 1 ≤ j ≤M} , (5.12)

then the basis functions wj, 1 ≤ j ≤ M , of the finite element space are defined by the
relations

wj ∈ Xh, and ϕi,h(wj) = δij, 1 ≤ i ≤M. (5.13)
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The basis functions of the finite element space are derived from the basis functions of
the finite elements, as follows: Let ϕh ∈ Σh be of the form (5.11), let b be the associated
node, and let Kλ, λ ∈ Λ(b), denote all the finite elements of Fh for which b is a node. For
each λ ∈ Λ(b), let pλ denote the basis function of the finite element Kλ associated with
the restriction of ϕh to Kλ. Then the function w ∈ Xh defined by

w =

{
pλ over Kλ, λ ∈ Λ(b),
0 elsewhere,

is the basis function of the space Xh associated with the degree of freedom ϕh.
Let there be given a finite element space Xh with a set of degrees of freedom of the

form (5.12). Then with any function v : Ω̄→ R sufficiently smooth so that the degrees of
freedom ϕj,h, 1 ≤ j ≤M are well defined, we associate the function

Πhv =
M∑
j=1

ϕj,h(v)wj,

where the functions wj are the basis functions defined in (5.13). The function Πhv, called
the Xh-interpolant of the function v, is equivalently characterized by the conditions

Πhv ∈ Xh and ϕj,h(Πhv) = ϕj,h(v), 1 ≤ j ≤M.

Let s denote the maximal order of directional derivatives occurring in the finite el-
ements (K, PK,ΣK),K ∈ Fh, we will usually consider, that the domain dom Πh of the
Xh-interpolation operator Πh is the space

dom Πh = Cs(Ω).

The next theorem states a relationship between the “global” interpolation operator
Πh and the “local” interpolation operators ΠK.

Theorem 5.3. Let v be an arbitrary function in the space dom Π. Then the restriction
v|K belongs to the space dom Π, and we have

(Π v)|K = ΠKv|K, ∀K ∈ Fh.
Additionally to the definition 5.4 of the affine-equivalent finite elements we will need

a more general definition of the affine-equivalent sets:

Definition 5.5. Two open subsets Ω and Ω̂ of Rn are called affine-equivalent if there
exists an invertible affine mapping

F : x̂ ∈ Rn → F (x̂) = Bx̂+ b ∈ Rn (5.14)

such that Ω = F (Ω̂). The correspondences

x̂ ∈ Ω̂→ x = F (x̂) ∈ Ω, (5.15)

(v̂ : Ω̂→ R)→ (v = v̂F−1 : Ω→ R), (5.16)

hold between the points x̂ ∈ Ω̂ and x ∈ Ω, and between functions defined over the set Ω̂
and the set Ω. We have v̂(x̂) = v(x) for all points x̂ and x in the correspondence (5.15)
and all functions v̂, v in the correspondence (5.16).
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5.3.3 Remarks for the coupling method

We denote in the sequel by Pk a k-dimensional space of functions, which satisfy a dif-
ferential equation in Ω. Additionally to that we define a special interpolation operator
Π̂ based on the analytical solution, which is given in (4.2). Since we are working with
C0-continuity of the finite element solution in Ω, we define the domain of definition of Π̂
as the space dom Π̂ = C0(Ω). But we would like to mention that one can ask also for
higher order continuity, i.e. in that case dom Π̂ = Cs(Ω), where s denotes the highest
order derivative appearing in the definition of degrees of freedom for the special element.
The interpolation operator Π̂, as it was proved in Chapter 4, has the following invariance
property

Π̂p̂ = p̂, ∀ p̂ ∈ Pk(Ω). (5.17)

To proceed further with the convergence analysis of the proposed scheme we need
to make an important remark. In the classical theory of the finite elements method
the convergence analysis is based on the definition of affine-equivalent sets (see again
[Ciarlet 1978]). All estimates in this classical case are derived for a reference element,
and then transferred to an element in the existing triangulation by an affine mapping.
The quality of these estimates depends on the regularity of basis functions, and on the
characteristic size of an element in the triangulation. This theory cannot be applied
directly to our setting, because additionally to the standard elements T (which are fully
covered by the classical theory), we have the coupling elements T and the analytical
elements A. The difficulties with elements T and A are coming from several aspects:

(i) the regularity of basis function is restricted by a singular term in the analytical
solution (3.13);

(ii) the coupling elements are not affine-equivalent to each other, because the interpola-
tion operator Π̂ is constructed in a way, that instead of several separated coupling
elements, in fact, we have one coupled element.

To overcome these difficulties we need to consider two possible strategies. First strat-
egy is that we consider a coupled element TA = A ∪ T in ΩSE as one element in the
triangulation, and this element can be considered as an affine-equivalent to a reference
coupled element. The second strategy is to consider all elements separately, particularly
this strategy is significantly important in the case when we fix the radius of ΩA. The idea
of fixing the radius rA is coming from practical experience, because if rA goes to zero we
the influence of the correct approximation of the singular solution is also going to zero.
In opposite to it from fixed radius and greater number of the coupling elements one can
expect “better” approximation of the boundary values for the analytical solution, which
could lead to a higher quality of results near the singularity.

We will perform the convergence analysis for both of these strategies separately during
next sections.
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5.4 Convergence with the coupled element TA
At first we consider the convergence analysis with the coupled element TA, which is a
union of the coupling elements T and the analytical element A inside of the each special
element (see Fig. 5.1). The idea behind of this construction is to get an element which
will belong to the affine-equivalent family of finite elements. This is possible due to the
fact, that we have constructed the continuous interpolation operator Π̂ between A and T,
i.e. dom Π̂ = C0(TA).

A

T

T

TT

T

T

T

T

T T

T

T

TA

1
Figure 5.1: The coupled element TA = A ∪ T in ΩSE

To complete the definition of the coupled element TA we introduce:

(i) Ξ is the set of degrees of freedom of the coupled element TA, which is defined as
follows

Ξk = ΣTi ∪ ΣA,

where Ti denotes the coupling elements belonging to the special element Ω
(k)
SE in the

triangulation Fh;

(ii) PTA is the set of the basis functions of the coupled element TA, which is defined as
follows

Pk(TA) = PTi ∪ Pk,
where PTi denotes the set of the basis function of the coupling elements belonging

to the special element Ω
(k)
SE in the triangulation Fh.

Thus we defined the coupled element (TA,Pk,Ξ) as an element from the affine-equivalent
family of finite elements in the sense of the definition 5.4.

Our goal here is to get a classical error estimate in W 1,p(TA). To construct this
estimate we need to assure that the Sobolev embedding theorems are satisfied for the
singular functions (3.13) and (4.2). Since the analytical solution has a singularity of order
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1
2
, the desired embeddings can be satisfied for the value of p ∈

(
1, 4

3

)
. Therefore we can

formulate the following theorem:

Theorem 5.4. Let
(
T̂A, P̂k, Ξ̂

)
be a coupled element, where we denote by Ξ̂ the set of

its degrees of freedom. If for some numbers p ≤ q ≤ ∞ that are chosen based on the
analytical solution the following continuous embeddings hold

W 2,p(T̂A) ↪→ C0(T̂A), (5.18)

W 2,p(T̂A) ↪→ W 1,q(T̂A), (5.19)

Pk(T̂A) ⊂ W 1,q(T̂A), (5.20)

then there exists a constant C
(
T̂A, P̂k, Ξ̂

)
such that for all affine-equivalent elements

(TA,Pk,Ξ), and all functions v ∈ W 2,p(TA) we have

|v − ΠTAv|1,q,TA ≤ C
(
T̂A, P̂k, Ξ̂

)
{meas(TA)} 1

q
− 1
p
h2
TA
ρTA
|v|2,p,TA, (5.21)

where ΠTA denotes the PTA-interpolant of the function v, and
meas (TA) = dx − measure of TA,
hTA = diam(TA),
ρTA = sup {diam(S); S is a ball contained in TA} .

Proof. The proof of this theorem is completely analogous to the proof in [Ciarlet 1978] for
polynomial preserving operators. A straightforward adaptation to our setting is possible
by considering a wider class of operators, which preserve not only polynomials, but also
half-integer terms, which could appear in the analytical solution, i.e. we use the invariance
property (5.17). Another important condition is the domain of definition of the operator
Π̂ that is defined over TA. As it was proved in the main interpolation theorem in Chapter
4 we can construct the operator Π̂ for an arbitrary number of nodes, and thus obtain the
continuity for the basis functions inside of the coupled element TA, therefore the standard
proof can be adapted here.

Remark 7. The quality of the estimate (5.21) strongly depends on the value of q, since the

value of {meas(TA)} 1
q
− 1
p can vary with q. To give more information about it we express

the factor meas(TA) in terms of hTA and ρTA by using the following inequality

σ2ρ
2
TA ≤ meas(TA) ≤ σ2h

2
TA,

where σ2 denotes the dx-measure of a unit sphere in R2. If the difference 1
q
− 1

p
is negative,

then we need to use the left inequality to get an estimate, and the right inequality in the
opposite case. Moreover the left inequality should be taking for all values q > p, and right
inequality can be used only in the case q = p. By using these inequalities we avoid an
increase of error in TA.
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We work with regular finite elements TA in the following sense:

(i) there exists a constant C such that

hTA
ρTA
≤ C ∀TA-elements.

(ii) the diameters hTA approach zero.

For such elements we can get the following estimation for the norm:

Theorem 5.5. Let (TA,PTA,ΞTA) be a given regular affine family of coupled elements,

whose reference element
(
T̂A, P̂k, Ξ̂

)
satisfies assumptions (5.18), (5.19) and (5.20).

Then there exists a constant C
(
T̂A, P̂k, Ξ̂

)
such that for all coupled elements TA in

the family, and all functions v ∈ W 2,p(TA) we have

‖v − ΠTAv‖1,q,TA ≤ C
(
T̂A, P̂k, Ξ̂

)
{meas(TA)} 1

q
− 1
p hTA|v|2,p,TA. (5.22)

Remark 8. The quality of the estimate (5.22) can be still improved by working with the
difference v − ΠTAv in the analytical element. Because if the leading coefficient in front
of the singular term can be calculated exactly, then this difference will belong to a better
Sobolev space. But to investigate this question is not a purpose of this work at the
moment.

To come from the local error estimate (5.22) to the global error estimate over Ω we
use the theorem 5.3 which relates the local and the global interpolation operator. To end
up discussion in this subsection we will show a global error estimate in Ω, which is made
by summing up the local errors element-by-element. We have the following estimate for
the norm:

‖v − vh‖2
1,p,Ω ≤

∑
T∈Fh

‖v − vh‖2
1,p,T +

∑
TA∈Fh

‖v − vh‖2
1,p1,TA,

where the parameter p1 depends on regularity of the analytical solution, and must be
chosen to satisfy the embedding (5.18).

To investigate the convergence rate for the proposed method we apply the scaling pa-
rameters h1 and h2 (refinement parameters) to the affine mappings (5.14) for the standard
element T and for the coupled elements TA, respectively. Additionally we restrict the
diameters ρ1, ρ2 to be proportional to h1, h2, and for p = q and p1 = q1 we get

‖v − vh‖1,q,Ω ≤ C1h1|v|2,p,T + C2h2|v|2,p1,TA. (5.23)

Finally we set the scaling parameters h1 and h2 to be equal to h, and thus we obtain

‖v − vh‖1,q,Ω ≤ C h (|v|2,p,T + |v|2,p1,TA) . (5.24)

The estimates (5.23)-(5.24) are sharper than in the case of using the norms instead
of the semi-norms. Because in the current case we can get a zero error for the special
types of boundary conditions: for instance, for the boundary conditions which lead to a
solution represented by a linear function.
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5.5 Convergence with a fixed radius

In this section we show convergence results for the second strategy in the case of a fixed
radius of the analytical domain ΩA. Due to the fixed radius a global refinement by a scaling
factor is not an appropriate choice in this case. Instead of such a global refinement we
can increase the number of the coupling elements around, i.e. we increase the number of
the interpolation nodes in the corresponding interpolation problem at the interface ΓAD.
This approach can lead to lower computational costs since a local refinement near the
singularity is not necessary, but of course with the increasing number of the nodes we
need to perform some adaptation of the mesh around the special element to avoid a big
change in the area of neighbour elements. Thus, one of the goals of this strategy is to try
to reduce the number of elements in the triangulation Fh.
Remark 9. We would like to underline that the idea of the fixed size of a finite element
cannot be covered by the classical theory. As we have seen in the previous section, the
estimate for the norm is based on the condition that the diameters hK have to approach
zero, which is obviously not true for a fixed size of A. Therefore we have to introduce
new ideas of the error estimation.

In this case we consider each type of elements separately: T , T and A. For the coupling
elements T we define by PT a set of its basis functions. The singularity in (3.13) comes

from the leading term r
1
2 , but since the basis functions for the coupling elements T are

based on the interpolation function (4.2) defined on the interface ΓAD, i.e. for r = rA,
the set PT has no singular function. Due to the fact that the elements T are constructed
in a way to get C0 continuity between the elements, we can apply directly results from
[Ciarlet 1978], and we formulate the following theorem:

Theorem 5.6. Let (T,Pk,ΞT) be a coupling element from a given triangulation Fh, where
we denote by ΞT the set of its degrees of freedom. If for some numbers p, q ∈ [1,∞) and
for some integers m, k the following continuous embeddings hold

W k+1,p(T) ↪→ C0(T),

W k+1,p(T) ↪→ Wm,q(T),

Pk(T) ⊂ Wm,q(T),

then there exists a constant C (T,Pk,ΞT) such that for all functions v ∈ W k+1,p(T) we
have

|v − ΠTv|m,q,T ≤ C (T,Pk,ΞT) {meas(T)} 1
q
− 1
p
hk+1
T
ρmT
|v|k+1,p,T,

where ΠT denotes the PT-interpolant of the function v, and
meas (T) = dx − measure of T,
hT = diam(T),
ρT = sup {diam(S); S is a ball contained in T} .
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The construction of the error estimate in A requires a more advanced technique, since
the radius of ΩA is fixed and cannot approach zero. Instead, we consider the task of
approximation by interpolation in our settings: what is the quality of the approximation
of u(z) defined by (3.13) by fn(z) with an increasing number of the coupling elements,
i.e. with an increasing number of the interpolation nodes?

Let us take a closer look on the interpolation problem (4.20)

fn(ϕj) = Uj, j = 0, . . . , n− 1, (5.25)

where ϕj ∈ [−π, π] are interpolation nodes, which can be arbitrary but all different, Uj are
unknown displacements at the interpolation nodes. The displacements Uj are determined
through the solution of a global boundary value problem in Ω, it means that they are
approximated by the finite element solution, therefore we have the following interpolation
problem instead

fn(ϕj) = Ũj, j = 0, . . . , n− 1, (5.26)

where Ũj denotes the approximated values of displacements. We will call in the sequel
the interpolation problem (5.25) the “exact” interpolation problem, and the interpola-
tion problem (5.26) the “approximated” interpolation problem. Correspondingly, we will
denote by fn(ϕ) and f̃n(ϕ) the “exact” and the “approximated” interpolation functions.
Our goal here is to estimate the error between the exact solution and the “approximated”
interpolation function, i.e.

|u(rA, ϕ)− f̃n(ϕ)|,
where u(rA, ϕ) is the exact solution in ΩA restricted to the interface ΓAD. Let us rewrite
this error as follows

|u(rA, ϕ)− f̃n(ϕ)| ≤ |u(rA, ϕ)− fn(ϕ) + fn(ϕ)− f̃n(ϕ)| ≤

≤ |u(rA, ϕ)− fn(ϕ)|+ |fn(ϕ)− f̃n(ϕ)|,

where |u(rA, ϕ) − fn(ϕ)| is the error of the “exact” interpolation, and |fn(ϕ) − f̃n(ϕ)|
is the coupling error. The coupling error represents the difference between the “exact”
interpolation and the “approximated” interpolation which we have in reality. We will
consider these errors separately.

5.5.1 Error of the exact interpolation

We consider the “exact” interpolation problem (5.25). Since in this case the right hand
side is given by the exact displacements, which are defined by the exact solution u(rA, ϕj)
on the interface ΓAD. Thus we have the following interpolation problem

fn(ϕj) = u(rA, ϕj), j = 0, . . . , n− 1.

This problem corresponds to the classical question of approximation of an analytic func-
tion f(z) by its interpolation polynomial pn(z). Results related to the approximation by
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interpolation can be found in [Davis 1975, Gaier 1987]. The main idea is based on the Her-
mitian representation of an analytic function f(z), see for example [Markushevich 1967].

Let us consider an analytic function f(z) and a set of points z1, z2, . . . , zm in a domain
G. The Hermitian representation of the function f(z) is given by

f(z) = Π(z) +R(z),

where Π(z) is the interpolating polynomial of function f(z) satisfying the interpolation
conditions at points z1, z2, . . . , zm, and R(z) is the interpolation error. Functions Π(z)
and R(z) can be represented as the Cauchy-type integrals

Π(z) =
1

2π i

∫
γ

f(ζ)

ω(ζ)

ω(ζ)− ω(z)

ζ − z dζ,

R(z) =
1

2π i

∫
γ

f(ζ)

ζ − z
ω(z)

ω(ζ)
dζ,

where γ is a closed rectifiable Jordan curve lying in G and containing the points z1, . . . , zm,
and ω(z) is the polynomial defined by

ω(z) = (z − z1) · · · (z − zm).

Based on the Hermitian representation the following theorem can be proved:

Theorem 5.7. [Davis 1975] Let E, S, and G be bounded simply connected regions, E ⊂
S ⊂ G, whose boundaries are CE, CS, and CG, respectively. CG is a simple, closed,
rectifiable curve, and CS and CG are assumed to be disjoint.

Let δ =minimum distance from CG to CE, ∆ =maximum distance from CS to CE and
assume that ∆

δ
< 1.

Let the interpolation points lie in R and let f(z) be analytic in and on CG. Then the
interpolation polynomial pn(f ; z) converges to f(z) uniformly in S.

To be able to apply this theorem to our setting we have to perform some intermediate
steps, because the interpolation function (4.2) is not a polynomial due to the presence of
half-integer powers. To overcome this difficulties we will use the ideas from the proof of
the main interpolation theorem 4.1. We introduce the new variable

t = ei
ϕ
2 , |t| = 1.

As we have shown, the interpolation function (4.2) for the case of an even number of
nodes can be written as follows

fn(t) =

1
2
n−1∑
k=0

[
2k + 1

2
ā2k+1 t

−2k−1 + a2kκ t
−2k + kā2k t

−2k−

−kā2k t
−2k+4 + a2k+1κ t

2k+1 − a2k+1κ t
−2k−1+

+a2kκ t
2k − 2k + 1

2
ā2k+1 t

−2k+3

]
,
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and for the case of an odd number

fn(t) = 2a0κ+

n−1
2∑

k=1,2

[
t−2k(a2kκ+ k ā2k)− k ā2kt

−2k+4 − 2k−1
2
ā2k−1t

−2k+5+

+t−2k+1
(

2k−1
2
ā2k−1 − a2k−1κ

)
+a2k−1κ t

2k−1 + a2kκ t
2k
]
.

In the both cases the interpolation problem (5.25) can be reformulated in the form

P (tj) = tn−1
j u(rA, tj), j = 0, . . . , n− 1,

where P (t) is a polynomial of the form

P (t) :=
2n−2∑
l=0

αlt
l.

According to the theorem 5.7 we consider a bounded simply connected region E con-
taining all interpolation nodes tj, and a greater bounded simply connected region G
covering E where the function u(r, t) is analytic, and its boundary is a Jordan curve. Ad-
ditionally we consider a bounded simply connected region S, such that E ⊂ S ⊂ G, and
the boundaries of these regions are denoted by CE, CS, CG, and CE and CS are disjoint.

By using the integral representation of the interpolation error we have

R(t) := u(rA, t)− P (t) =
1

2πi

∫
CG

(t− t1) · · · (t− tn)u(rA, ξ) dξ

(ξ − t1) · · · (ξ − tn)(ξ − t) . (5.27)

If we denote by M = max
ξ∈CG
|u(rA, ξ)|, d = min

ξ∈CG
|ξ− t| for t ∈ S, L(CG) =length of CG, then

with the assumption that the function u(r, t) is analytic in and on CG, the interpolation
error (5.27) can be estimated as follows

|R(t)| ≤ ML(CG)

2πd

(
∆

δ

)n+1

, (5.28)

where δ is the minimum distance from CG to CE, ∆ is the maximum distance from CS to
CE.

To adapt the estimate (5.28) to our settings we need to consider the general properties
of the domain Ω and of the triangulation Fh. According to Fig. 5.2 we define CG as follows

CG = sup (Bk(Ω)) ,

where Bk(Ω) are balls contained in Ω. Since the interpolation nodes are located on the
boundary ΓAD, which is represented by a circle of a radius rA, it seems to be natural to
consider CE, CS and CG as circles of greater radii. In this case the estimate will be also
true in a domain after a transformation by the new variable t.
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1
Figure 5.2: Geometrical parameters for the estimate |R(t)|

Since we construct the triangulation Fh with a characteristic size of the standard
elements h, and the distance between ΩA and any boundary of Ω can be expressed by j h,
where j > 1. Finally we define the distances from the crack tip O to the boundaries of
E, S and G as follows

|CE −O| = rA + ε, |CS −O| = rA + 2ε, |CG −O| = rA + j h,

for ε > 0, and the parameters in the estimate (5.28) can be expressed as follows

d = j h− 2ε, δ = j h− ε, ∆ = 2rA + ε, L(CG) = 2π(rA + j h).

Finally we get the following estimate for our settings

|R(t)| ≤ M2π(rA + j h)

2π(j h− 2ε)

(
2rA + ε

j h− ε

)n+1

≤ M(rA + j h)

j h− 2ε

(
2rA

j h

)n+1

, (5.29)

for ε > 0. From the estimate (5.29) we see that the uniform convergence takes place
only if 2rA < j h, i.e. the diameter of ΩA must be smaller then the distance from ΩA

to the closest boundary of Ω. Moreover, we can express the fixed radius rA in terms of
the characteristic size h, by using a varying scaling factor j1 < j, which varies with a
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refinement of the standard mesh around ΩSE. Additionally we say that ε = h, and we get
the following estimate

|R(t)| ≤ M(j1 + 2j)

2j − 4

(
j1

j

)n+1

, (5.30)

which give us an exponential convergence for the exact boundary data. The quality of
the estimate depends on the distance between ΩA to the closest boundary of Ω, since in
the case of a greater distance one can take a finer mesh around the special element which
leads to a greater number of interpolation nodes.

Remark 10. Let us now for simplicity denote by L1 the distance from the analytical
domain ΩA to the closest boundary of Ω, and let ε = L1

4
. Then the error estimate (5.29)

reads as follows

|R(t)| ≤ 2M(rA + L1)

L1

(
2rA

L1

)n+1

,

and the error can be controlled by choosing the optimal ratio rA
L1

for a given domain Ω.

Thus the estimate (5.30) gives us the desired estimate for the “exact” interpolation
problem (5.25). In the next step we will present an alternative proof of the main interpo-
lation theorem, which will play a significant role in the estimation of the coupling error
|fn(ϕ)− f̃n(ϕ)|.

5.5.2 Alternative proof of the main interpolation theorem

In Chapter 4 we have proved the main interpolation theorem 4.1. But in this subsection
we will give an alternative proof for the interpolation theorem. The requirement for the
alternative proof comes from the error estimation of the coupling. As we will see in the
sequel by using the alternative proof we will be able to obtain the desired error estimate
in an elegant way. Let us consider the following theorem:

Theorem 5.8. For given n arbitrary interpolation nodes ϕj ∈ [−π, π] and n arbitrary
complex numbers yj there exists a unique function (4.2), such that

fn(ϕj) = yj, j = 0, . . . , n− 1. (5.31)

Proof. At first we rewrite the interpolation function (4.2) as follows

fn(ϕ) =

N1∑
k=0,2

r
k
2
Abke

iϕ k
2 +

N1∑
k=0,2

r
k
2
Adke

−iϕ k
2 −

N1∑
k=0,2

r
k
2
Acke

−iϕ( k2−2)+

+

N2∑
k=1,3

r
k
2
Abke

iϕ k
2 −

N2∑
k=1,3

r
k
2
Afke

−iϕ k
2 −

N2∑
k=1,3

r
k
2
Acke

−iϕ( k2−2),

where the new coefficients bk, ck, dk, and fk are connected with the old coefficients ak by
the following equations

bk = akκ, ck =
k

2
āk, dk =

bk
κ

+ ck, fk =
bk
κ
− ck. (5.32)
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Notice that the coefficients in front of e−iϕ( k2−2) for different values of k belong to, either
eiϕ

k
2 or to e−iϕ

k
2 , we can simplify the expression for (4.2) to the following form

fn(ϕ) =

N1∑
k=−N1,
−N1+2,...

Ak e
iϕ k

2 +

N2∑
k=−N2,
−N2+2,...

Bk e
iϕ k

2 , (5.33)

where the coefficients Ak and Bk with help of (5.32) can be related to the original coeffi-
cients ak and āk as follows

Ak =



r
|k|
2

A a|k| +
|k|
2
r
|k|
2

A ā|k|, for −N1 ≤ k < −N1 + 4,

r
|k|
2

A a|k| +
|k|
2
r
|k|
2

A ā|k| −
|k|+ 4

2
r
|k|+4

2
A ā|k|+4, for −N1 + 4 ≤ k ≤ −2,

a0(κ+ 1)− 2 r2
Aā4, for k = 0,

κ rA a2 − rAā2, for k = 2,

r
k
2
A κ ak, for 4 ≤ k ≤ N1,

(5.34)

and

Bk =



−r
|k|
2

A a|k| +
|k|
2
r
|k|
2

A ā|k|, for −N2 ≤ k < −N2 + 4,

|k|
2
r
|k|
2

A ā|k| − r
|k|
2

A a|k| −
|k|+ 4

2
r
|k|+4

2
A ā|k|+4, for −N2 + 4 ≤ k ≤ −1,

κ r
1
2
A a1 −

3

2
r

3
2
Aā3, for k = 1,

κ r
3
2
A a3 −

1

2
r

1
2
Aā1, for k = 3,

κ r
k
2
A ak, for 5 ≤ k ≤ N2.

(5.35)

The interpolation function (5.33) contains 2n − 1 coefficients, but we have only n
interpolation nodes, therefore we have to find n − 1 additional relations which should
help us to identify uniquely the coefficients Ak and Bk. This problem can be overcome by
studying equations (5.34)-(5.35). One can observe that the coefficients A−|k| and B−|k| can
be expressed in terms of the coefficients A|k| and B|k|, respectively. We get the following
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equations

A−|k| =



κ−1A|k| +
|k|
2
κ−1 Ā|k|, for −N1 ≤ k < −N1 + 4,

κ−1A|k| +
|k|
2
κ−1 Ā|k| −

|k|+ 4

2
κ−1 Ā|k|+4, for −N1 + 4 ≤ k ≤ −4,

(κ− 1)−1
[
A2 + κ−1 Ā2

]
+ (κ− 1)−1

[
Ā2 + κ−1 A2

]
−

−3κ−1 Ā6, for k = −2,

(5.36)

and

B−|k| =



−κ−1B|k| +
|k|
2
κ−1 B̄|k|, for −N2 ≤ k < −5,

−r
3
2
A

(
κB3 +

1

2
B̄1

)(
κ2r

3
2
A −

3

4
r

3
2
A

)−1

+

+
3

2
r

3
2
A

(
κB̄3 +

1

2
B1

)(
κ2r

3
2
A −

3

4
r

3
2
A

)−1

− 7

2
κ−1B̄7, for k = −3,

−1

2
κ−1B1 −

3

2
κ−1r

3
2
A

(
κB̄3 +

1

2
B1

)(
κ2r

3
2
A −

3

4
r

3
2
A

)−1

+

+
3

4
r

3
2
A

(
κB3 +

1

2
B̄1

)(
κ2r

3
2
A −

3

4
r

3
2
A

)−1

− 5

2
κ−1B̄5, for k = −1.

(5.37)

Finally we combine two sums in (5.33) into one sum

fn(ϕ) =
n−1∑
k=0

ck e
iϕ k

2 ,

with the coefficients ck defined by

ck =

{
Ak, if k is even,
Bk, if k is odd.

Thus we have obtained an equivalent interpolation problem

n−1∑
k=0

ck e
iϕj

k
2 = yj, j = 0, . . . , n− 1, (5.38)

with exactly n unknown coefficients ck. The matrix of the equivalent interpolation problem
is a Vandermonde matrix, and its determinant is given by

det(F ) =
∏

1≤j<k≤n

(ei
1
2
ϕk − ei 12ϕj) 6= 0,
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where by F we denote the interpolation matrix. The product in this determinant is not
equal to zero due to the assumption on the interpolation nodes.

Thus the interpolation problem (5.38) is uniquely solvable for an arbitrary number of
nodes, and for an arbitrary right hand side, i.e. we can uniquely identify the coefficients
ck, and consequently Ak and Bk for all values of k.

The next step in this proof is to show that from the coefficients Ak and Bk we can
uniquely calculate the original coefficients ak and āk. The important point here is that the
coefficients ak and āk are connected by the complex conjugation, and therefore the trans-
formation must preserve these dependencies. To overcome this problem we decompose all
of the coefficients into real and imaginary parts as follows

ak = a
(1)
k + ia

(2)
k , āk = a

(1)
k − ia

(2)
k ,

Ak = A
(1)
k + iA

(2)
k , Āk = A

(1)
k − iA

(2)
k ,

Bk = B
(1)
k + iB

(2)
k , B̄k = B

(1)
k − iB

(2)
k .

After that the formulae (5.34)-(5.35) can be rewritten as follows

A
(1)
k =



a
(1)
|k| r

|k|
2

A

(
1 +
|k|
2

)
, for −N1 ≤ k < −N1 + 4,

a
(1)
|k| r

|k|
2

A

(
1 +
|k|
2

)
− |k|+ 4

2
r
|k|+4

2
A a

(1)
|k|+4, for −N1 + 4 ≤ k ≤ −2,

a
(1)
0 (κ+ 1)− 2 r2

Aā
(1)
4 , for k = 0,

rA a
(1)
2 (κ− 1), for k = 2,

r
k
2
A κ a

(1)
k , for 4 ≤ k ≤ N1,

A
(2)
k =



a
(2)
|k| r

|k|
2

A

(
1− |k|

2

)
, for −N1 ≤ k < −N1 + 4,

a
(2)
|k| r

|k|
2

A

(
1− |k|

2

)
+
|k|+ 4

2
r
|k|+4

2
A a

(2)
|k|+4, for −N1 + 4 ≤ k ≤ −2,

a
(2)
0 (κ+ 1) + 2 r2

Aā
(2)
4 , for k = 0,

rA a
(2)
2 (κ+ 1), for k = 2,

r
k
2
A κ a

(2)
k , for 4 ≤ k ≤ N1,
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B
(1)
k =



r
|k|
2

A a
(1)
|k|

( |k|
2
− 1

)
, for −N2 ≤ k < −N2 + 4,

r
|k|
2

A a
(1)
|k|

( |k|
2
− 1

)
− |k|+ 4

2
r
|k|+4

2
A a

(1)
|k|+4, for −N2 + 4 ≤ k ≤ −1,

κ r
1
2
A a

(1)
1 −

3

2
r

3
2
A a

(1)
3 , for k = 1,

κ r
3
2
A a

(1)
3 −

1

2
r

1
2
Aa

(1)
1 , for k = 3,

κ r
k
2
A a

(1)
k , for 5 ≤ k ≤ N2,

B
(2)
k =



−r
|k|
2

A a
(2)
|k|

( |k|
2

+ 1

)
, for −N2 ≤ k < −N2 + 4,

r
|k|
2

A a
(2)
|k|

( |k|
2

+ 1

)
+
|k|+ 4

2
r
|k|+4

2
A a

(2)
|k|+4, for −N2 + 4 ≤ k ≤ −1,

κ r
1
2
A a

(2)
1 +

3

2
r

3
2
A a

(2)
3 , for k = 1,

κ r
3
2
A a

(2)
3 +

1

2
r

1
2
Aa

(2)
1 , for k = 3,

κ r
k
2
A a

(2)
k , for 5 ≤ k ≤ N2.

By using the relations (5.36)-(5.37) we get all of the coefficients Ak, Bk for k < 0 in terms
of combinations of the coefficients for k > 0. Therefore we get the transformation from
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ak, āk to Ak, Bk in a matrix form as follows

A
(1)
0

A
(2)
0

B
(1)
1

B
(2)
1
...

B
(1)
N2

B
(2)
N2

A
(1)
N1

A
(2)
N1



= M



a
(1)
0

a
(2)
0

a
(1)
1

a
(2)
1
...

a
(1)
N2

a
(2)
N2

a
(1)
N1

a
(2)
N1



,

where the matrix M has the following structure

M =



κ+1 0 0 0 0 0 0 0 ... 0 0 0 0

0 κ+1 0 0 0 0 0 0 ... 0 0 0 0

0 0 κ r
1
2
A

0 0 0 − 3
2 r

1
2
A

0 ... 0 0 0 0

0 0 0 κ r
1
2
A

0 0 0 3
2 r

1
2
A

... 0 0 0 0

0 0 0 0 rA(κ−1) 0 0 0 ... 0 0 0 0

0 0 0 0 0 rA(κ+1) 0 0 ... 0 0 0 0

0 0 − 1
2 r

1
2
A

0 0 0 κ r
3
2
A

0 ... 0 0 0 0

0 0 0 1
2 r

1
2
A

0 0 0 κ r
3
2
A

... 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0 ... κ r

N2
2

A
0 0 0

0 0 0 0 0 0 0 0 ... 0 κ r

N2
2

A
0 0

0 0 0 0 0 0 0 0 ... 0 0 κ r

N1
2

A
0

0 0 0 0 0 0 0 0 ... 0 0 0 κ r

N1
2

A



.

The dimension of the transformation matrix M is dim(M) = 2n × 2n, depending
on even or odd number of the interpolation nodes we will have either the coefficients
corresponding to A

(1)
N1
, A

(2)
N1

or B
(1)
N2
, B

(2)
N2

in the last row of the matrix M . Now we will
show that the transformation matrix has a non-zero determinant. If we rearrange the
rows and columns of the matrix M in order to have at first equations corresponding to the
coefficients B

(1)
1 , B

(2)
1 , B

(1)
3 , B

(2)
3 , we see that the determinant det(M) can be decomposed
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by the rows 5, . . . , 2n, and we obtain

det(M) =

(
2n∏
i=5

Mii

)
· |M4|,

where the matrix M4 is given by

M4 =


κ r

1
2
A 0 −3

2
r

3
2
A 0

0 κ r
1
2
A 0 −3

2
r

3
2
A

−1
2
r

1
2
A 0 κ r

3
2
A 0

0 1
2
r

1
2
A 0 κ r

3
2
A

 .

The determinant of this matrix can be calculated explicitly

|M4| =
1

16
r4

A(4κ− 3)2.

Finally we obtain the following expression for the determinant

det(M) =
1

16
r4

A(4κ− 3)2

2n∏
i=5

Mii. (5.39)

Looking at the structure of the transformation M we see, that the entries Mij, and
particularly Mii, depend only on parameters N1, N2, rA, and κ, which by their definition
are all positive. Therefore the product in (5.39) cannot be equal to zero.

The remaining part is to discuss the determinant |M4|, which contains (4κ− 3)2. The
parameter κ is a material constant, which is related to the Poisson’s ratio ν as follows

κ =

{
3− 4ν for plane strain,
3− ν
1 + ν

for plane stress.

Taking into account that ν ∈ (0, 1
2
) one can easily see that κ ∈ (1, 3), and therefore

(4κ− 3)2 6= 0.

Thus we have shown, that the determinant det(M) is not equal to zero, and therefore the
transformation matrix has an inverse for an odd number of nodes. The case of an even
number of nodes is analogous.

Finally we have proved that interpolation problem (5.31) is uniquely solvable for an
arbitrary number of interpolation nodes and for an arbitrary right hand side.
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5.5.3 The coupling error

Our interest now is to estimate the difference |fn(ϕ)− f̃n(ϕ)| between the “approximated”
and the “exact” interpolation function. Let us denote by Φ = {Φ1,Φ2, . . . ,Φn} a vector
of the basis functions corresponding to (4.2), then the “approximated” and the “exact”
interpolation functions are given by

fn(ϕ) = [a]T Φ, f̃n(ϕ) = [ã]T Φ,

where [a] and [ã] are the vectors of unknown coefficients corresponding to the interpolation
problems (5.25)-(5.26), respectively. These vectors of the unknown coefficients can be
expressed as follows

a = [Φk(ϕj)]
−1 U, ã = [Φk(ϕj)]

−1 Ũ,

where U and Ũ are vectors of the “exact” and the “approximated” displacements. Let
us introduce the following notation

G = [G]kj = [Φk(ϕj)]
−1

for the inverse of the interpolation matrix. Now we can write

|fn(ϕ)− f̃n(ϕ)| =
∣∣[a]T Φ− [ã]T Φ

∣∣ =

∣∣∣∣[G U]T Φ−
[
G Ũ

]T
Φ

∣∣∣∣ =

=
∣∣∣UT GT Φ− ŨT GT Φ

∣∣∣ =
∣∣∣(UT − ŨT

)
GT Φ

∣∣∣ .
Let us introduce the constant δ∗ as follows

|Uj − Ũj| ≤ δ∗, j = 0, . . . , n− 1,

this inequality implies, that the coupling error explicitly depends only on the quality of
approximation for the displacements at the interface ΓAD, which is seems to be a natural
assumption. We have

|fn(ϕ)− f̃n(ϕ)| ≤ δ∗
∣∣GT Φ

∣∣ , (5.40)

thus we need to estimate the transposed inverse of interpolation matrix GT and the vector
of the basis functions Φ.

We start the construction of the coupling estimate by considering the matrix [G]kj.
As an estimate we will use the spectral norm of the matrix, which is defined as follows,
see for instance [Gantmacher 1966, Phillips & Taylor 1996]:

Definition 5.6. The spectral norm of a matrix A is defined by

‖A‖2 =
√
ρ (AA∗),

where ρ(AA∗) is the spectral radius of AA∗ defined as follows

ρ(AA∗) = max
1≤i≤n

|λi|,

where λ1, λ2, . . . , λn are the eigenvalues of AA∗.
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Bounds for the eigenvalues are given by the Gerschgorin’s theorems:

Theorem 5.9. [Gerschgorin 1931, Phillips & Taylor 1996] The eigenvalues of an n× n
matrix A lie within the union of n (Gerschgorin) disks Di in the complex plane with centre
aii and radius

Λi =
n∑

j=1,
j 6=i

|aij|, i = 1, 2, . . . , n.

Thus Di is the set of points z ∈ C given by

|z − aii| ≤ Λi, i = 1, 2, . . . , n.

Theorem 5.10. [Gerschgorin 1931, Phillips & Taylor 1996] If s of the Gerschgorin disks
in the complex plane form a connected domain which is isolated from the remaining n− s
disks, then there are precisely s eigenvalues of A within this connected domain.

The matrix [Φk(ϕj)]
−1 obtained from the basis function in the form (4.2) is not diago-

nally dominant, and therefore its Gerschgorin disks will not give us the isolated regions for
the eigenvalues. To make the estimates more precise we will work with the transformation
matrix M and with the Vandermonde matrix F which were introduced in the alternative
proof of the main interpolation theorem. In this case the coefficients ak and ãk can be
calculated as follows

a = M−1 F−1 U, ã = M−1 F−1 Ũ,

and the estimate (5.40) has the following form

|fn(ϕ)− f̃n(ϕ)| ≤ δ∗
∣∣M−1 F−1 Φ

∣∣ ≤ δ∗
∥∥M−1

∥∥
2

∥∥F−1
∥∥

2
‖Φ‖2 , (5.41)

and the remaining task is to estimate the spectral norms of M−1 and F−1, and the norm
of Φ.

Let us at first study the matrix M . The spectral norm of the inverse matrix can be
calculated as follows

‖M−1‖2 =

√
ρ
(

[M−1]T M−1
)

=
√
ρ
(
[MMT ]−1) =

√(
min

1≤i≤n
|λi|
)−1

,

where λ1, λ2, . . . , λn are the eigenvalues of MMT .
Taking into account the structure of the matrix M one can verify by straightforward

calculations, that the matrix MMT has the following form

[
MMT

]
ij

=

{
(Mii)

2 for i = j = 1, 2, 11, 12, . . . , 2n,
mij for i, j = 3, . . . , 10,
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and the submatrix m is explicitly given by

m =



1
4 rA(4κ2+9r2A) 0 0 0 ...

0 1
4 rA(4κ2+9r2A) 0 0 ...

0 0 r2A(κ2−2κ+1+4r2A) 0 ...

0 0 0 r2A(κ2+2κ+1+4r2A) ...

− 1
2κ rA(1+3r2A) 0 0 0 ...

0 1
2κ rA(1+3r2A) 0 0 ...

0 0 −2r4A κ 0 ...

0 0 0 2r4A κ ...

(5.42)

... − 1
2κ rA(1+3r2A) 0 0 0

... 0 1
2κ rA(1+3r2A) 0 0

... 0 0 −2r4A κ 0

... 0 0 0 2r4A κ

... 1
4 rA(1+4κ2 r2A) 0 0 0

... 0 1
4 rA(1+4κ2 r2A) 0 0

... 0 0 r4A κ2 0

... 0 0 0 r4A κ2


(5.43)

Thus the 2n− 8 eigenvalues of the matrix MMT are given by

λi = (Mii)
2 , i = 1, 2, 11, 12, . . . , 2n,

or by taking into account the form of elements Mii

λ1,2 = (κ+ 1)2,

λi =


κ2 r

i−1
2

A , if i is odd,

κ2 r
i−2
2

A , if i is even,

i = 11, . . . , 2n.

The remaining eight eigenvalues are the eigenvalues of the matrix (5.42)-(5.43), which are
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explicitly given by

λ3 =
1

2
r2

A

(
κ2r2

A + κ2 + 2κ+ 1 + 4r2
A +

(
κ2 − 2κ2rA + κ2r2

A + 2κ+ 1− 2κ rA + 4r2
A

) 1
2(

κ2 + 2κ2rA + κ2r2
A + 2κ+ 1 + 2κ rA + 4r2

A

) 1
2

)
,

λ4 =
1

2
r2

A

(
κ2r2

A + κ2 + 2κ+ 1 + 4r2
A −

(
κ2 − 2κ2rA + κ2r2

A + 2κ+ 1− 2κ rA + 4r2
A

) 1
2(

κ2 + 2κ2rA + κ2r2
A + 2κ+ 1 + 2κ rA + 4r2

A

) 1
2

)
,

λ5 =
1

2
r2

A

(
κ2r2

A + κ2 − 2κ+ 1 + 4r2
A +

(
κ2 − 2κ2rA + κ2r2

A − 2κ+ 1 + 2κ rA + 4r2
A

) 1
2(

κ2 + 2κ2rA + κ2r2
A − 2κ+ 1− 2κ rA + 4r2

A

) 1
2

)
,

λ6 =
1

2
r2

A

(
κ2r2

A + κ2 − 2κ+ 1 + 4r2
A −

(
κ2 − 2κ2rA + κ2r2

A − 2κ+ 1 + 2κ rA + 4r2
A

) 1
2(

κ2 + 2κ2rA + κ2r2
A − 2κ+ 1− 2κ rA + 4r2

A

) 1
2

)
,

λ7,9 =
1

8
rA

(
9r2

A + 4κ2r2
A + 1 + 4κ2 +

(
4κ2 − 8κ2rA + 4κ2r2

A + 1 + 6rA + 9r2
A

) 1
2(

4κ2 + 8κ2rA + 4κ2r2
A + 1− 6rA + 9r2

A

) 1
2

)
,

λ8,10 =
1

8
rA

(
9r2

A + 4κ2r2
A + 1 + 4κ2 −

(
4κ2 − 8κ2rA + 4κ2r2

A + 1 + 6rA + 9r2
A

) 1
2(

4κ2 + 8κ2rA + 4κ2r2
A + 1− 6rA + 9r2

A

) 1
2

)
.

As we see the eigenvalues λi, i = 1, . . . , 2n depend on the only two parameters rA and κ.
Since the parameter rA is the radius of the analytical domain ΩA, for practical calculations
we can always use a normalised radius, i.e. rA = 1. For the normalised radius all possible
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eigenvalues have the following form

λ1,2 = (κ+ 1)2,

λ3 = κ2 + κ+
5

2
+

1

2

√
20κ2 + 20κ+ 25,

λ4 = κ2 + κ+
5

2
− 1

2

√
20κ2 + 20κ+ 25,

λ5 = κ2 − κ+
5

2
+

1

2

√
20κ2 − 20κ+ 25,

λ6 = κ2 − κ+
5

2
− 1

2

√
20κ2 − 20κ+ 25,

λ7,9 =
5

4
+ κ2 +

1

8

√
256κ2 + 64,

λ8,10 =
5

4
+ κ2 − 1

8

√
256κ2 + 64,

λi = κ2, i = 11, . . . , 2n.

It’s easy to check that these eigenvalues are ordered as follows

λ6 < λ8,10 < λ4 < λi < λ1,2,5,7,9 < λ3,

therefore the smallest eigenvalue for κ ∈ (1, 3) is λ6. Thus the spectral norm of M−1 is
given by

‖M−1‖2 =

√
λ−1

6 =
1√

κ2 − κ+ 5
2
− 1

2

√
20κ2 − 20κ+ 25

. (5.44)

The obtained estimate for the spectral norm of M−1 is uniform, i.e. it’s independent on
the number of interpolation nodes n for n > 3.

Now we will construct the estimate for the spectral norm of F−1, where the matrix
F is a Vandermonde matrix. Let us consider arbitrary interpolation nodes jl ∈ [−π, π],
then the entries of the matrix F can be written as

Fjlk = e
1
2
i 2π
n−1

jlk, l = −n− 1

2
, . . . ,

n− 1

2
, k = 0, . . . , n− 1.

In the construction of the estimate we will work with the conjugate of the interpolation
matrix, and additionally we rescale the entries of the matrix as follows

Tlk :=
1√
n
e−

1
2
i 2π
n−1

jlk.
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This matrix is also a Vandermonde matrix, and it can be considered as a Fourier matrix
for a signal x. Let x̂ be its Fourier transform, defined by x̂ = T x. We will use this relation
to the Discrete Fourier Transform later on in the construction of the estimate.

Our goal here is to get estimates for the eigenvalues of the matrix T TH , so we have

(
T TH

)
ab

=
n−1∑
k=0

Fjak F
∗
kjb

=
1

n

n−1∑
k=0

ω
1
2

(ja−jb)k,

where
ω = e−i

2π
n−1 .

Following [Ferreira 1999] we rewrite the matrix T TH as follows

N = [Npq]
n−1
p,q=0 = [s(jp − jq)]n−1

p,q=0 ,

where

s(x) =
1

n

n−1∑
k=0

ω
1
2
k x.

The introduced matrix N is not diagonally dominant, therefore its Gerschgorin disks
are not suitable for getting the estimates. To overcome this problem we introduce addi-
tionally to the matrix N and function s(x) two functions s+(x) and s−(x), such that their
Discrete Fourier Transforms ŝ+(x), ŝ−(x) have to satisfy the following conditions

ŝ−(x) ∈ R, ŝ+(x) ∈ R,

0 ≤ ŝ−(x) ≤ ŝ(x) ≤ ŝ+(x). (5.45)

The matrices corresponding to ŝ−(x) and ŝ+(x) are defined by

N+ =
[
N+
pq

]n−1

p,q=0
= [s+(jp − jq)]n−1

p,q=0 ,

N− =
[
N−pq
]n−1

p,q=0
= [s−(jp − jq)]n−1

p,q=0 .

The matrices N−, N , and N+ are positive semi-definite, and they can be ordered as follows

0 ≤ N− ≤ N ≤ N+.

Similar we can get estimates for the greatest and the smallest eigenvalues of the matrix
N

λmax(N−) ≤ λmax(N) ≤ λmax(N+),

λmin(N−) ≤ λmin(N) ≤ λmin(N+).
(5.46)

The Gerschgorin discs of the matrix N are given by

Di = {z ∈ C : |z −Nii| ≤ Ri(N)} ,
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where
Nii = s(0) = n,

Ri(N) =
n−1∑
j=0,
j 6=i

|Nij|.

As we have mentioned above the matrix N is not diagonally dominant, therefore
instead of working with its Gerschgorin disk we will work with the Gerschgorin disks of
N− and N+. Using the bounds (5.46) we can estimate

λmax(N) ≤ λmax(N+) ≤ s+(0) + max
i

Ri(N
+),

λmin(N) ≥ λmin(N−) ≥ s−(0)−max
i

Ri(N
−).

An important task now is to choose two functions s+(x) and s−(x) such that the
conditions (5.45) are satisfied. Following [Ferreira 1999] we introduce a family of signals
V (k; a, b, l), periodic in k with period n, whose discrete Fourier transforms V̂ (k; a, b, l) are
real and trapezoidal

V̂ (k; a, b, l) =



k − a+ l

l
, k ∈ [a− l + 1, a− l],

1, k ∈ [a, b],

l − k + b

l
, k ∈ [b+ 1, b+ l − 1].

(5.47)

The inverse discrete Fourier transform of the trapezoidal function (5.47) is given by the
expression

V (k; a, b, l) =
1√
n

n−1
2∑

j=−n−1
2

V̂ (j; a, b, l) e
1
2
i 2π
n−1

jk =

= ei
π k

2(n−1)
(a+b)

sin
(

π k l
2(n−1)

)
sin
(

π k
2(n−1)

(b− a+ l)
)

l
√
n sin2

(
π k

2(n−1)

) .

As functions s+(k) and s−(k) we choose the following functions

s+(k) =
1√
n
V (k;−n− 1

2
,
n− 1

2
, l) =

sin
(

π k l
2(n−1)

)
sin
(

π k
2(n−1)

(n− 1 + l)
)

l n sin2
(

π k
2(n−1)

) ,

s−(k) =
1√
n
V (k;−n− 1

2
+ l,

n− 1

2
− l, l) =

sin
(

π k l
2(n−1)

)
sin
(

π k
2(n−1)

(n− 1− l)
)

l n sin2
(

π k
2(n−1)

) ,
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and

s+(0) =
n− 1 + l

n
, s−(0) =

n− 1− l
n

.

Let us denote by D the maximum distance between two jl, and by d the minimum
distance, i.e.

d ≤ |jp − jq| ≤ D.

Now we want to get the Gerschgorin disks for the matrix associated with the function
V (k; a, b, l), and we get

n−1∑
p=0,
p6=q

1√
n
|V (jp − jq; a, b, l)| =

n−1∑
p=0,
p6=q

∣∣∣∣∣∣ei π k
2(n−1)

(a+b)
sin
(
π(jp−jq)l

2(n−1)

)
sin
(
π(jp−jq)
2(n−1)

(b− a+ l)
)

l n sin2
(
π(jp−jq)
2(n−1)

)
∣∣∣∣∣∣ ≤

≤
n−1∑
p=0,
p6=q

∣∣∣∣∣∣
sin
(
π(jp−jq)l

2(n−1)

)
sin
(
π(jp−jq)
2(n−1)

(b− a+ l)
)

l n sin2
(
π(jp−jq)
2(n−1)

)
∣∣∣∣∣∣ =

=
n−1∑
p=0,
p6=q

∣∣∣∣∣∣
1
2

(
cos
[
π(jp−jq)
2(n−1)

(b− a)
]
− cos

[
π(jp−jq)
2(n−1)

(b− a+ 2l)
])

l n sin2
(
π(jp−jq)
2(n−1)

)
∣∣∣∣∣∣ .

We expand the numerator in the last fraction into its Taylor series omitting the higher
order terms which are small for an increasing value of n, thus we get

1

2

(
cos

[
π(jp − jq)
2(n− 1)

(b− a)

]
− cos

[
π(jp − jq)
2(n− 1)

(b− a+ 2l)

])
=

=
1

2

(
1− 1

2

[
π(jp − jq)
2(n− 1)

(b− a)

]2

− 1 +
1

2

[
π(jp − jq)
2(n− 1)

(b− a+ 2l)

]2
)

=

=
1

4

(
π(jp − jq)
2(n− 1)

)2 (
(b− a+ 2l)2 − (b− a)2

)
= l

(
π(jp − jq)
2(n− 1)

)2

(b− a+ l) .

Thus we obtain the following estimate

n−1∑
p=0,
p6=q

∣∣∣∣∣∣
1
2

(
cos
[
π(jp−jq)
2(n−1)

(b− a)
]
− cos

[
π(jp−jq)
2(n−1)

(b− a+ 2l)
])

l n sin2
(
π(jp−jq)
2(n−1)

)
∣∣∣∣∣∣ ≤

n−1∑
p=0,
p6=q

∣∣∣∣∣∣∣
l
(
π(jp−jq)
2(n−1)

)2

(b− a+ l)

l n sin2
(
π(jp−jq)
2(n−1)

)
∣∣∣∣∣∣∣ ,

and finally we have

n−1∑
p=0,
p6=q

1√
n
|V (jp − jq; a, b, l)| ≤

d2 α2(b− a+ l)

nD2 sin2(α)
,
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where α = πD
2(n−1)

. Finally we obtain the following estimates for the eigenvalues

λmax(N) ≤ n− 1 + l

n
+
d2 α2(n− 1 + l)

nD2 sin2(α)
,

λmin(N) ≥ n− 1− l
n

− d2 α2(n− 1− l)
nD2 sin2(α)

.

Minimizing the first expression or maximizing the second with respect to l we get

λmax(N) ≤ n− 1

n
+
d2 α2(n− 1)

nD2 sin2(α)
,

λmin(N) ≥ n− 1

n
− d2 α2(n− 1)

nD2 sin2(α)
.

Studying the asymptotic behaviour of the estimate for the smallest eigenvalue λmin(N)
we see that

lim
n→∞

[
n− 1

n

(
1− d2 α2

D2 sin2(α)

)]
=
D2 − d2

D2
. (5.48)

It follows that for the case of non-equidistant nodes, i.e. D > d, one has more specified
estimate for the smallest eigenvalue. In the case of the equidistant nodes, i.e. D = d,
the estimates tells only that the smallest eigenvalue is greater or equal to zero, which is
true by the definition of a semi-positive definite matrix. Therefore for the case of the
equidistant nodes the estimates has to be improved, but in any case the estimate doesn’t
lead to a contradiction.

Coming back to the original matrix F−1 we get the following estimate:

‖F−1‖2 =
√
λmin(N)−1 ≤

√
nD2 sin2(α)

(n− 1)(D2 sin2(α)− d2α2)
.

Finally, the estimate (5.41) has the form

|fn(ϕ)− f̃n(ϕ)| ≤

≤ δ∗

√
nD2 sin2(α)

(n− 1)(D2 sin2(α)− d2α2)
(
κ2 − κ+ 5

2
− 1

2

√
20κ2 − 20κ+ 25

) ‖Φ‖2 .

The remaining part is to estimate the norm of the vector of the basis functions Φk.
Taking into account that they are of the form

Φk(x) = e
1
2
i k x,
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we get

|fn(ϕ)− f̃n(ϕ)| ≤

≤ √n δ∗
√

nD2 sin2(α)

(n− 1)(D2 sin2(α)− d2α2)
(
κ2 − κ+ 5

2
− 1

2

√
20κ2 − 20κ+ 25

) .
To obtain the final estimate we need to notice that the error δ∗ comes from the finite

element approximation, and this error depends on a characteristic size h of the elements
(see Fig. 5.3). For our purpose we express this characteristic size in terms of the number
of interpolation nodes n as follows

h = tan

(
π

n− 1

)
(rA + l), (5.49)

where rA is the radius of the analytical domain and can be normalised to 1, and l is one
of the geometric parameters of the coupling elements going to zero with the increasing
number of nodes.

x1

x2

hT

hT

R
h

rA l

α

v1

v2

v3

1
Figure 5.3: Geometry of the coupling element with characteristic sizes

Since we have made the rescaling of the interpolation nodes by 1√
n

during estimation

of the spectral norm for the matrix F−1, we need also to apply this rescaling to the
characteristic size of the finite element mesh (5.49), so we obtain

h =
1√
n

tan

(
π

n− 1

)
(rA + l).
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Finally we get the following coupling error

|fn(ϕ)− f̃n(ϕ)| ≤

≤

√√√√√ n2D2 sin2(α)
(

1√
n

tan
(

π
n−1

)
(rA + l)

)2

(n− 1)(D2 sin2(α)− d2α2)
(
κ2 − κ+ 5

2
− 1

2

√
20κ2 − 20κ+ 25

) .
Since we assume for the spectral norm (5.44) the normalised radius rA = 1 and take

into account that the parameter l is decreasing inversely proportional to n, we obtain the
following estimate

|fn(ϕ)− f̃n(ϕ)| ≤

≤

√√√√ nD2 sin2(α)
(
tan
(

π
n−1

)
(1 + l

n
)
)2

(n− 1)(D2 sin2(α)− d2α2)
(
κ2 − κ+ 5

2
− 1

2

√
20κ2 − 20κ+ 25

) =: RC(n).

Studying the asymptotic behaviour of this estimate we see that

lim
n→∞


√√√√ nD2 sin2(α)

(
tan
(

π
n−1

)
(1 + l

n
)
)2

(n− 1)(D2 sin2(α)− d2α2)
(
κ2 − κ+ 5

2
− 1

2

√
20κ2 − 20κ+ 25

)
 = 0.

We see that the constructed estimate for the coupling error asymptotically converges to
zero independently on the distribution of nodes on the interaction interface ΓAD.

5.5.4 Final estimate

Finally we can combine the obtained error estimates: the error of the “exact” interpo-
lation, the coupling error, the error over the coupling elements, and the error over the
standard elements. Finally we can introduce a global error estimate in Ω by the following
estimate for the norm:

‖v − vh‖2
1,2,Ω ≤

∑
T∈Fh

‖v − vh‖2
1,2,T +

∑
T∈Fh

‖v − vh‖2
1,2,T + |R(t;n)|+ |RC(n)|,

where RC(n) represents the coupling error.
To investigate the global rate of convergence for this strategy we introduce a scaling

factor h for the elements T defined in (5.49). An analogous construction cannot be applied
to the elements T, since they are not belonging to an affine family, therefore we use a
characteristic size hT defined as follows

hT =

√
(rA + l)2 tan2

(
π

n− 1

)
+ l2.
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Making the normalisation of the radius rA and l, and applying the rescaling as in previous
subsection, we obtain

hT =
1√
n

√(
1 +

l

n

)2

tan2

(
π

n− 1

)
+

(
l

n

)2

.

Finally, we get

‖v − vh‖1,q,Ω ≤ C1h(n)|v|2,p,T + C2hT(n)|v|2,p,T + |R(t;n)|+ |RC(n)|,

or, if we replace h by (5.49)

‖v − vh‖1,q,Ω ≤ C1 tan

(
π

n− 1

)(
1 +

l

n

)
|v|2,p,T+

+C2hT(n)|v|2,p,T + |R(t;n)|+ |RC(n)|,

and thus we get an estimate which includes the information about a fixed radius rA and
the most essential is the number of interpolation nodes.
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Chapter 6

Numerical experiments

After the theoretical results for the method of coupling of the analytical and the finite
element solution, which we have introduced during the previous chapters, we show in this
chapter some basic results of simulations with the proposed method. We will show results
for two examples:

(i) The first example is a trivial problem with a known exact solution. For this purpose
we will use the classical solution from the fracture mechanics given for a crack in an
infinite plane. The exact solution in this case is known, and can be found almost in
any books on fracture mechanics, see for example [Anderson 2005, Liebowitz 1968].

(ii) The second example is a more advanced applied example coming from engineer-
ing practice. We consider a concrete hinge, which is a part of a bridge column,
containing a single crack in the throat region.

The idea of considering such two examples comes from the fact that we are interested in
real application of the proposed method. The first, trivial, example serves to show that
the convergence of the method takes place not only in the theory, but also in practice. For
that reason we consider a problem with a well-known exact solution. In the considered
example the exact solution is a first term of the analytical solution for a crack tip problem
constructed in Chapter 3. In this case it’s particularly interesting to study the behaviour
of the method, because by the construction of the special element we need to use the
analytical solution with more than one term.

The second example of a concrete hinge shows applicability of the proposed method
in engineering practice. Due to the fact that we have proved the convergence of the
proposed method in the case of a global refinement, we can expect that the approximated
solution for a hinge will converges to a true solution with a refinement. The reason for
that expectation is the fact, that the boundary value problem associated with a hinge is
completely covered by the proposed theory.

We would like to underline, that this chapter presents only few results of simulations
which mostly serve to explore the possible next steps for a theoretical investigation of the
method. The task of an efficient computer implementation of the proposed method was
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put out of the scope of these simulations. All simulation were performed by a computer
program written in the Maple software. All calculation were done on a personal laptop
with the following characteristics: Inter Core i7-4500U CPU 1.80 GHz, 8.00 GB RAM,
Windows 8 64 bit.

6.1 Test example

As we have mentioned above, that at first we consider a trivial example with known exact
solution. Let us consider an infinite plane containing a single crack of a length 2a, which
is inclined by the angle α, with constant stresses p applied at infinity (see the Fig. 6.1).

x1

x2

2a

α

p

p

1
Figure 6.1: The inclined crack in an infinite plane

The exact solution for this problem is given by the following formulae (see again
[Liebowitz 1968]) for the displacements

u1 =
k1

√
2r

8µ

[
(2κ− 1) cos

(ϕ
2

)
− cos

(
3ϕ

2

)]
+ . . . ,

u2 =
k1

√
2r

8µ

[
(2κ+ 1) sin

(ϕ
2

)
− sin

(
3ϕ

2

)]
+ . . . ,

(6.1)
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and for the stresses

σ11 =
k1√
2r

cos
(ϕ

2

)[
1− sin

(ϕ
2

)
sin

(
3ϕ

2

)]
+ . . . ,

σ22 =
k1√
2r

cos
(ϕ

2

)[
1 + sin

(ϕ
2

)
sin

(
3ϕ

2

)]
+ . . . ,

σ12 =
k1√
2r

cos
(ϕ

2

)
sin
(ϕ

2

)
cos

(
3ϕ

2

)
+ . . . ,

(6.2)

where r, ϕ are polar coordinates, κ and µ are material parameters, and the parameter k1

is the stress intensity factor for a straight crack corresponding to a normal loading (Mode
I), which is defined as follows

k1 = p
√
a sin2 α,

where p is the value of stresses applied at infinity, a is the half length of the crack. Another
important type of fracture is the Mode II, which corresponds to in-plane shear loading and
tends to slide one crack face with respect to the other. The stress factor k2 corresponding
to the Mode II is given by

k2 = p
√
a sinα cosα.

For all calculations in this chapter we will consider α = π
2
, thus the stress intensity factors

are given by
k1 = p

√
a, k2 = 0. (6.3)

One can see that the exact solution (6.1) is nothing more than the term corresponding
to k = 1 in (3.13) with known coefficient a1. As it was shown in [Liebowitz 1968], that
the stress intensity factors can be related with the real and the imaginary part of the
coefficient a1 as follows

a
(1)
1 + i a

(2)
1 =

1√
2

(k1 − k2).

As a drawback of such a trivial example we mention that the exact solution (6.1)-(6.2)
is represented by only the leading terms in the infinite series (3.13). For many applications
such a simplification shows acceptable results, see for example [Anderson 2005], but in
practice we often have to deal with cracked bodies which are bounded, and a crack is
located in a very narrow part, like for instance in a concrete hinge, for such bodies it
is not really clear that one cannot omit all higher order terms. This question requires
a more detailed consideration and more sophisticated examples. In our first numerical
experiments we will try to deal with this problem by considering different types of the
interpolation function (4.2): we will vary the number of the singular terms (half-integer
powers) and the number of the regular terms (integer powers).

For simulations we consider a square domain of length L located around one of the
crack tips according to the Fig. 6.2.

127



p

p

Γ1

Γ1

Γ0

Γ0

Γ0

Γc

Γc

L

1Figure 6.2: Boundary value problem for the test example

Since we know the exact solution for an infinite plane we can take any combination
of Dirichlet and Neumann boundary conditions. For the calculation we consider the
following boundary conditions, which are common in literature:

u = u1 + i u2, on Γ0,
σn = n · σ̃, on Γ1,
σn = 0, on Γc,

(6.4)

where n is a unit normal vector, σ̃ is the stress tensor with components defined by (6.2),
and the components u1 and u2 are given by (6.1). We will perform calculations with the
following material parameters

E = 38.9 · 109 N/m2, ν = 0.2.

These parameters correspond to the concrete C60 which will be used later for a concrete
hinge. The parameters µ and κ from (6.1) are defined then by

µ =
E

2(1 + ν)
, κ = 3− 4ν,

where κ is chosen for the case of a plane strain. We perform all calculations for the
following parameters

a = 50 mm, L = 10 mm, p = 104 N/m2.
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To show first numerical results for the test example we will work with relative error
in L2(Ω) in a percentage form defined as follows

ε =
‖u− uh‖L2

‖u‖L2

· 100%, (6.5)

where uh is the approximated solution constructed by the coupling method, and u is the
exact solution (6.1).

Since we would like to test the proposed numerical scheme, we will choose the different
number of the basis functions in (4.2) corresponding to half-integer and integer powers.
All calculations will be performed according to the first strategy, i.e. by using a global
refinement by a scaling parameter. We will show here only results related to four and
eight coupling elements. Cases of greater number of coupling element and the second
strategy we leave open for future work.

Let us consider at first the case of 5 interpolation nodes at the interface ΓAD corre-
sponding to four coupling elements. We will use in all figures the following notations for
lines

represents the case of N1 = 1 and N2 = 6. In this case the half-integer powers are
represented only by the leading term r

1
2 , and the rest part of the basis is given by

integer powers;

represents the case of N1 = 3 and N2 = 4. In this case the half-integer powers
are represented the terms r

1
2 , r

3
2 , and the rest part of the basis is given by integer

powers;

represents the case of N1 = 5 and N2 = 2. In this case the half-integer powers are
represented the terms r

1
2 , r

3
2 , r

5
2 , and the rest part of the basis is given by integer

powers;

represents the case of N1 = 7 and N2 = 0. In this case the half-integer powers are
represented the terms r

1
2 , r

3
2 , r

5
2 , r

7
2 , and the only one integer power r0 is presented

in the basis.

The idea of considering different combinations of the basis functions comes from the
fact that in real applications for a bounded domain it can be necessary to consider not
only the leading terms, but some higher order terms. According to the test example one
can expect that the combination N1 = 1 and N2 = 6 will give the lowest error due to the
fact that the exact solution (6.1) contains only the leading term.

Let us at first present all figures related to the results for four coupling elements. Fig.
6.3-6.6 show the relative error for the displacements u in the analytical domain ΩA, in the
coupling elements T, in the CST elements, and in the whole domain Ω. For each case we
present two figures for the relative error – with respect to the global characteristic size of
a finite element mesh, and with respect to the total number of degrees of freedom in the
domain Ω.
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(a) With respect to the characteristic size of the finite element mesh

(b) With respect to the number of degrees of freedom

Figure 6.3: Relative error in the analytical domain for different number of basis functions
for four coupling elements

As we can see from Fig. 6.3-6.6 the considered case of different combinations of
the basis functions can be divided into two groups. First group is presented by N1 = 1,
N2 = 6 and N1 = 3, N2 = 4 which leads to almost the same level of error. The second
group is given by N1 = 5, N2 = 2 and N1 = 7, N2 = 0 which are also near to each other
but not so close as the first group. This observation coincides with the expectations about
the method:

• the method converges globally for all possible combinations of the basis functions
for the chosen number of coupling elements;

• the convergence rate in the whole domain is not affected by the proposed construc-
tion;

• the total error depends on the quality of the approximation near the singularity,
which we can see in Fig. 6.6.

The second point is explained by the fact that the proposed construction is local, and
therefore one cannot expect better results in the whole domain. The third point is related
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(a) With respect to the characteristic size of the finite element mesh

(b) With respect to the number of degrees of freedom

Figure 6.4: Relative error in all four coupling elements for different number of basis
functions

to theoretical studied of singular problems. As we have mentioned in the end of Chapter
2 the results of Maz’ya, Grisvard, and Costabel show that the exact solution of a singular
problem can be decomposed into a regular and a singular part. This fact is clearly reflected
by the proposed method: by taking more half-integer powers one improves the quality
of approximation of the singular part of exact solution. But in the considered example
the exact solution has only one singular terms, therefore the combinations with minimal
number of the singular terms give us the best results.

Let us now increase the number of the interpolation nodes to 9, which corresponds to
the case of eight coupling elements. Fig. 6.7 shows the relative error in the analytical
element for different number of basis functions.

Similar to the previous case we use in all figures the following notations for lines

represents the case of N1 = 1 and N2 = 14. In this case the half-integer powers are
represented only by the leading term r

1
2 , and the rest part of the basis is given by

integer powers;
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(a) With respect to the characteristic size of the finite element mesh

(b) With respect to the number of degrees of freedom

Figure 6.5: Relative error in all CST elements for different number of basis functions
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(a) With respect to the characteristic size of the finite element mesh

(b) With respect to the number of degrees of freedom

Figure 6.6: Relative error in the whole domain Ω for different number of basis functions
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(a) With respect to the characteristic size of the finite element mesh

(b) With respect to the number of degrees of freedom

Figure 6.7: The relative error in the analytical domain for different number of basis
functions for eight coupling elements

represents the case of N1 = 7 and N2 = 8. In this case the half-integer powers
are represented the terms r

1
2 , r

3
2 , r

5
2 , r

7
2 , and the rest part of the basis is given by

integer powers;

represents the case of N1 = 3 and N2 = 12. In this case the half-integer powers
are represented the terms r

1
2 , r

3
2 , and the rest part of the basis is given by integer

powers.

The choice of the proposed combinations between half-integer and integer powers is
based on results from the simulations with four coupling elements. As we have observed
in this case the best accuracy is obtained by taking only the leading term or in the case
when N2−N1 = 1. But since for n = 9 exist more possible combinations we add the case
of N1 = 3 and N2 = 12 to consideration.

As we can see from Fig. 6.7-6.10 the relative errors for all considered combinations
are almost equal. This fact coincides with the expectation from previous simulation for
n = 5, that such combinations of the basis function will lead to the best accuracy.
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(a) With respect to the characteristic size of the finite element mesh

(b) With respect to the number of degrees of freedom

Figure 6.8: Relative error in all eight coupling elements for different number of basis
functions

Finally, to conclude experiments with the test example we show results for comparisons
of the relative errors with respect to the characteristic size of the finite element mesh
between considered two cases. We take for that comparison the two best combinations
from the case of four coupling elements and all three considered combinations from the
case of eight coupling elements.

Similar to the previous cases we use in all figures the following notations for lines

represents the case of N1 = 1 and N2 = 6 for four coupling elements;

represents the case of N1 = 3 and N2 = 4 for four coupling elements;

represents the case of N1 = 1 and N2 = 14 for eight coupling elements;

represents the case of N1 = 7 and N2 = 8 for eight coupling elements;

represents the case of N1 = 3 and N2 = 12 for eight coupling elements.
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(a) With respect to the characteristic size of the finite element mesh

(b) With respect to the number of degrees of freedom

Figure 6.9: Relative error in all CST elements for different number of basis functions
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(a) With respect to the characteristic size of the finite element mesh

(b) With respect to the number of degrees of freedom

Figure 6.10: Relative error in the whole domain Ω for different number of basis functions
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Fig. 6.11 shows the relative error in the analytical element. As we can see the case of
eight coupling elements lead to lower relative error. This decreased error comes from the
fact, that in order to keep the same characteristic size of the finite element mesh for both
cases we need to make smaller the radius of ΩA. Therefore we get lower error for eight
coupling elements.

Figure 6.11: Comparison of the relative error in the analytical element

As we can see from Fig. 6.12-6.14 the relatives errors for eight coupling elements

Figure 6.12: Comparison of the relative error in the coupling elements

are greater than in the case of four coupling elements. But the convergence rate is higher
for the eight coupling elements, and after the final refinement the relative errors in the
whole domain Ω are very near to each other. But due to a smaller radius of the analytical
element, the local error is lower for eight coupling elements.

The obtained results show necessity to continue research in the direction of the optimal
number of coupling elements and the optimal combination between half-integer and integer
powers. This conclusion is based on the fact that with higher number of coupling elements
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Figure 6.13: Comparison of the relative error in the CST elements

Figure 6.14: Comparison of the relative error in the whole domain Ω

we obtained higher rate of convergence for the same number degrees of freedom, and we
obtained almost the same accuracy.

6.2 Application to a concrete hinge

Concrete hinges are common and very important construction elements in bridge engineer-
ing. Since more than hundred years a lot of bridges were constructed applying concrete
hinges. Concrete hinges have been introduced by Eugéne Freyssinet in the end of the
nineteenth century, for more details we refer to [Marx & Schacht 2010]. The development
of the basic theoretical results according to practical applications of concrete hinges was
done later on by Fritz Leonhardt [Leonhardt 1986], in [Leonhardt & Reimann 1965] the
full scale was described. In the recent years concrete hinges become again a popular tool
for structural engineers during construction of integral bridges.

Due to different factors (moving of bridge, temperature deformations of concrete,
dynamic loads, etc.) a crack can be observed in the hinge throat region. Because of
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high risks in a case of damage of the hinge it is very important to have a precise model
of the hinge itself and of the throat region particularly. The different types of load
cases and the structural behaviour of hinges from the engineering point of view were
studied in [Morgenthal & Olney 2014]. But not so many models for concrete hinges were
investigated so far, and in practice, the methods based on empirical observations from
Leonhardt are still actively used by the engineers. The first attempt to the modelling of a
concrete hinge by the coupling of an analytical solution and a finite element solution was
done in [Legatiuk et al. 2013]. In this section we will present further applications of the
proposed method to a real practical problem in a non-trivial geometry. Fig. 6.15 shows
schematically important geometrical parameters of a concrete hinge.
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Figure 6.15: Geometrical parameters of a concrete hinge

Leonhardt made the following suggestions for the geometrical parameters

a ≤ 0.3 d,
t ≤ 0.2 a,
tan β ≤ 0.1.

According to these suggested conditions we will use the following set of parameters in all
calculations

d = 2 m, a = 0.2 m, t = 0.03 m,
d1 = 4 m, d2 = 4 m, β = 3°. (6.6)

Several possible approaches for modelling of concrete structures can be considered in
practice: non-linear material models, including creep and shrinkage of a concrete; time
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dependent models; linear elastic models, etc. In this study of a concrete hinge we will
work only in the framework of a linear elastic model, which is a simplified model of a real
concrete structure.

Following [Morgenthal & Olney 2014] we will introduce now basic engineering formu-
lae for calculation of a concrete hinge. This model is confined to the throat area and has
the following main assumptions:

• the effective area accommodating the throat behaviour and responsible for allowing
the hinge rotation extends a

2
to either side of the throat line, where a is the throat

width;

• bilinear stress-strain behaviour of the concrete is assumed: compression behaviour
is linear but not tensile strength is accounted for.

Let us consider a vertical load N and a moment M acting on top of a hinge. In this
case for a cracked hinge we obtain a linear stress distribution in the throat region defined
by

σ(c)
r =

2N

3a(1
2
−m)b

, (6.7)

where b is the along-throat length, m is non-dimensionalised eccentricity which is given
by

m =
M

aN
.

The stress σ
(c)
r corresponds to a peak stress at the “right” side in the throat for a cracked

hinge. Another important characteristic is the linearised rotation of the hinge (see Fig.
6.15) which is calculated as follows

r = tanα =
8N

9 a bEcm(1− 2m)2
,

which at the limit of m = 1
3

gives

rlim =
8N

a bEcm
, (6.8)

where Ecm is the initial tangent modulus. The limit case corresponds to a crack which
goes until the middle of the throat region.

After numerical simulations we will compare the obtained results with the results
obtained by formulae (6.7) and (6.8). But before the calculations we have to convert the
load N and the moment M to boundary conditions for the Lamé equation. Fig. 6.16
shows the design model for a hinge.

The boundary conditions are defined as follows:
u = 0, on Γu,
σn = 0, on Γn,
σn = 0, on Γc,
σn = q(x), on Γp,

(6.9)
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Figure 6.16: Design model for a concrete hinge

where the linear load function q(x) is constructed from the stresses σleft and σright which
are calculated as follows

σleft = −|N |+ M

ω′
, σright = −|N | − M

ω′
, (6.10)

where

ω′ =
d2

6
,

and the moment M can be calculated from the load N by using

M =
|N | a

3
.

We will perform all calculations for the concrete C60 with the material parameters

Ecm = 38.9 · 109 N/m2, ν = 0.2.

We take the following value for the vertical load N

N = −10.0 MN.
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Taking b = 1 m and m = 1
3

corresponding to the critical case we obtain

σ
(c)
r = −200 M Pa, M = 0.66 MN m,

σleft = −9 MN/m2, σright = −11 MN/m2,
rlim = −0.010282 ≈ −0.58915°,

(6.11)

where the minus sign for the rotation angle means that rotation is in clockwise direction.
The function q(x) has the following form

q(x) =
x+ d

2

d
(σright − σleft) + σleft, x ∈

[
−d

2
,
d

2

]
. (6.12)

The load function in this form contains not only a linear part of load, but also a constant
load. The constant load will lead to a contact problem with free boundary conditions
on the crack faces, which is outside of the scope of this work. Since the throat stresses
in front of the crack tip and the rotation of a hinge are not influenced by the constant
load, we remove the constant part from the function q(x). Finally we obtain the following
loading function

q(x) =
x+ d

2

d
(σright − σleft) , x ∈

[
−d

2
,
d

2

]
. (6.13)

According to the chosen values (6.11) we obtain the following load function

q(x) = −x− 1 MN/m2, x ∈
[
−d

2
,
d

2

]
. (6.14)

We will perform all calculations for the hinge with four coupling elements and with a
global refinements of a whole finite element mesh. For the basis functions we consider the
case of half-integer powers represented only by the leading term r

1
2 . We perform a series

of simulations applying refinements of the finite element mesh, particularly in the throat
region. We start the calculation with 1520 degrees of freedom, in this case a mesh in the
throat region is rather coarse (see Fig. 6.17). The last considered mesh contains 16928
degrees of freedom, Fig. 6.18 shows the meshing in the throat region for this case.

As we have mentioned above one of our main interests in the modelling of the concrete
hinge is to investigate the stress distribution in front of the crack tip (the dashed line in
Fig. 6.16). For all of the considered meshes the corresponding stresses are plotted with
respect to the normalised length in Fig. 6.19. These curves are obtained by calculating
the normal stresses over the elements lying in front of the crack tip. Near the crack tip
the normal stresses are calculated over the analytical element, and the sign ∞ in Fig.
6.19 indicates that the stresses go to infinity at the crack tip due to the singularity.

The red curves correspond to the first three meshes where the throat region is not yet
refined properly. The blue curves show the results for the meshes with a finer mesh in
the throat region. As we can see from the Fig. 6.19 even in the case of a coarse mesh
in the throat region one can obtain results which are comparable to finer meshes, except
the peak stress in the right side of the throat. For the first considered mesh (Fig. 6.17)
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Figure 6.17: Mesh in the throat region in the case of 1520 degrees of freedom

Figure 6.18: Mesh in the throat region in the case of 16928 degrees of freedom
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Figure 6.19: Normal stresses σ22 in front of the crack tip. All considered meshes

the peak stress is closed to the prediction from the engineering model (6.11), but with a
refinement they stabilising to the higher value of −600 M Pa.

Fig. 6.20 shows the normal stresses in front of the crack tip for the five most refined
meshes. As we can see from the figure the curves do not change significantly any more.
Thus we can say that we obtained the optimal level for refinement in the throat region
to get stabilised results for the normal stresses in front of the crack tip. From this result
one can also conclude that for the investigation of the stresses in the throat region 9004
degrees of freedom will be sufficient. The number of degrees of freedom is really low for
such a big structure as a bridge column. But we have to underline, that our interests
are to investigate the normal stresses in front of the crack tip and the rotation angle of a
hinge. For deeper analysis of bridge column one definitely needs a proper refinement in
the whole domain.

Figure 6.20: Normal stresses σ22 in front of the crack tip. Five the most refined meshes
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Finally we show the normal stress curve for the finest mesh corresponding to 16928
degrees of freedom, see Fig. 6.21. All of the presented curves show the stress distributions
coinciding with the expectations from engineering practice: we have infinite stresses at
the crack tip and a high compression stress (peak stress) on the right part of the throat.
Due to the special element we can obtain the correct asymptotic behaviour for stresses at
the crack tip in the framework of the linear elastic fracture mechanics.

Figure 6.21: Normal stresses σ22 in front of the crack tip for the finest mesh, 16928 degrees
of freedom

Finally we would like to present results according to study of the rotation angle of
a concrete hinge. In our study we have calculated the rotation angle with respect to
four lines, the corresponding angles αi, i = 1, 2, 3, 4 are shown in Fig. 6.22. The idea of
considering four angles is to try to find a level of refinement when hinge stops to rotate as a
rigid body. Because in the engineering model the rotation of a hinge is considered as a rigid
body rotation. But in reality, particularly for columns of high height, one cannot expect
that due a possible compression of column during deformation process. This compression
can be observed with a certain level of refinement in the column. Therefore consider four
angles which are calculated after the deformation process, and when we observe that they
do not show similar results one can conclude that hinge doesn’t rotate any more as a rigid
body.

Fig. 6.23 shows the obtained results for the rotation angle. We use the following
notations for the lines:

α1, angle calculated along the left line of the upper column;

α2, angle calculated along the central line of the upper column;

α3, angle calculated along the right line of the upper column;

α4, angle calculated along the top line of the upper column.
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Figure 6.23: Rotation angles α1, α2, α3, α4 calculated in degrees

As we can see from Fig. 6.23 up to 9004 degrees of freedom all angles αi, i = 1, 2, 3, 4
are very closed to each over. But after the refinement with 9004 degrees of freedom we
see that the values of the considered angles vary significantly from each other. One can
conclude that in the first levels of refinement the hinge was rotating as a rigid body, but
after the level of 9004 degrees of freedom one can say that the compression of the upper
column is present in the finite element model. This observation has to be checked with
more numerical simulations for different levels of refinement in the column.
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The mean value of the rotation angle for 9004 degrees of freedom is

α = −0.0134989 ≈ −0.77343°.

The obtained value is higher than the value predicted by the model of Leonhardt (6.11)
(thick line in Fig. 6.23). This observation coincides with the results for the peak stress
in the throat region, which is also higher than predicted by the engineering model. To
judge on quality of these two models one can perform more numerical tests, particularly
by using some well-established commercial software, perform some physical experiments
to validate the considered models of a hinge, or one can try to construct the reference
solution for a linear elastic hinge applying the Schwarz-Christoffel mapping (3.28), which
we have introduced in Chapter 3.

Fig. 6.24 shows the Schwarz-Christoffel mapping of a concrete hinge to the unit disk.
In this case we approximate the curved parts in the throat region by straight lines, and
after a certain refinement it gives an accurate representation of the curve. But in general
case one can construct the mapping function for a polygon which has arcs as boundaries,
see for example [Bjørstad & Grosse 1987, Howell 1993]. After the mapping to the unit
disk we need to solve a Riemann-Hilbert boundary value problem in the unit disk. A
detailed description of a transformation of a boundary value problem of linear elasticity
to a Riemann-Hilbert boundary value problem is given in [Mußchelischwili 1971]. The
construction of the reference solution for a concrete hinge is not yet finished task and will
be considered as a next step of this research.

Figure 6.24: The Schwarz-Christoffel mapping of a concrete hinge to the unit disk
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Chapter 7

Summary and conclusions

7.1 Summary

The goal of this thesis was to study a coupling between an analytical and a numerical
solution for boundary value problems with a singularity. The problem of such a coupling
comes from the fact that the analytical solution near the singularity is a purely analytical
function, but the finite element solution is based on a piecewise polynomial. Therefore at
the interface between the two solutions the displacement field has jumps. To overcome this
problem we have introduced the new approach to obtain a continuous coupling between
the analytical and the finite element solution.

To get the desired C0 continuity we have introduced a special type of finite elements,
the so-called coupling elements T, which provide the continuity to the analytical element
A and to the standard CST elements T . In Chapter 4 we have discussed in detail the
procedure for the coupling. The interpolation problem at the interface ΓAD arising in this
construction was proved in Chapter 4 for an arbitrary number of the interpolation nodes.
This result is a basis for the convergence analysis of the proposed method.

Additionally in Chapter 4 we have discussed a strategy how to construct a finite
element mesh with a special element ΩSE, which contains the analytical element A, the
coupling elements T, and several CST elements. The main point was to propose a strategy
for a refinement with an increasing number of the interpolation nodes, i.e. of the coupling
element. In this strategy we used a criterion based on the shape parameter of the coupling
elements. This idea allows to avoid too narrow triangles with the refinement. Finally
we have proposed a strategy for numbering of the finite element mesh with the special
element.

Finally in Chapter 4 we have shown how to construct the shape functions for the finite
element approximation for the analytical element A and for the coupling elements T. The
obtained shape functions of the coupling elements T are the truncated analytical solution
at the interface ΓAD and are linear functions on the boundary with CST elements.

In Chapter 5 we have performed the numerical analysis of the proposed method. We
distinguish two different strategies for the error estimation: the first strategy is based on
the global refinement of the whole finite element mesh; the second strategy is based on

149



the idea of a fixed radius of the analytical element A and an increasing number of the
interpolation nodes. We have proven both strategies separately.

The first strategy is similar to the classical ideas of the theory of the finite element
method. But in our case we have to take care that due to construction the coupling
elements cannot be considered as affine-equivalent elements to each other. To overcome
this difficulty we consider the coupled element TA = A∪T in ΩSE as the one element in the
triangulation, and this element can be considered as the affine-equivalent to a reference
coupled element. Additionally, since the coupled element TA contains a singularity inside,
we need to assure that the Sobolev embedding theorems are satisfied anyway. Due to the
fact that we are interested to obtain the estimates in W 1,q(Ω) to satisfy the embedding
W 2,p(T̂A) ↪→ W 1,q(T̂A) we need to reduce the regularity p for the functions over the
coupled element TA. After taking care about these problems we can apply the standard
theorems of the finite element method to get the estimates.

The second strategy requires more advanced technique, since the standard theory of
the finite element method cannot work in the case of an element of a fixed size. The fact of
a fixed size element is close to the domain decomposition methods, but the principle idea
behind the proposed method is different. The idea of the domain decomposition methods
is based on the alternative method of Schwarz, which leads to an iterative procedure for
the construction of the solution. But in the proposed method the global boundary value
problem is solved without formulation of an additional problem in the domain ΩA. Thus
the proposed method is still the finite element method. Therefore we need to proposed a
new strategy for the error estimation.

Due to the fixed radius of the analytical element A a global refinement by a scaling
factor is not an appropriate choice in this case. Instead of such a global refinement we
can increase the number of the coupling elements around, i.e. we increase the number of
the interpolation nodes in the corresponding interpolation problem at the interface ΓAD.
This idea leads us to the question of the approximation by interpolation, and moreover
since the values at the interpolation nodes are calculated by finite element approximation,
we obtain the interpolation problem with not exact right hand side.

To estimate the error of the interpolation problem with not exact right hand side we
split this error into the error of the exact interpolation and the coupling error. The error
of the exact interpolation is estimated by using the classical theory of the approximation
of an analytic function by its interpolating polynomial. To apply this theory we need to
perform several preliminary steps, which are necessary due to the fact that the interpo-
lation function in our case is not a polynomial. In these steps we use the proof of the
main interpolation theorem from Chapter 4. To get the final estimate we use geometrical
properties of the domain Ω.

The coupling error is estimated by using the alternative proof of the main interpo-
lation theorem, which is presented in Chapter 5. The idea of this proof is based on a
transformation of the original interpolation problem to an interpolation problem with
a Vandermonde matrix F . The transformation is realised by using the transformation
matrix M . In this case the estimation of the coupling error is based on estimates for
the spectral norms of M−1 and F−1. Due to a structure of the matrix M one can easily
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calculate the spectral norm of M−1, but the Vandermonde matrix F requires more effort.
To get the estimate for F−1 we use a connection to the Discrete Fourier Transform and
by the introduction of two additional matrices one can obtain the bound for the minimal
and maximal eigenvalues of the matrix F−1.

Finally, Chapter 6 shows first numerical experiments performed by the proposed
method. The first numerical experiment is a test example with the known exact so-
lution from the linear elastic fracture mechanics. The obtained results show that all
considered cases converge to the exact solution, but total error depends on the quality of
the approximation near the singularity.

The second example in Chapter 6 is a realistic example from the engineering practice.
We consider a real size concrete hinge containing a crack in the throat region. For the
concrete hinge we perform several simulations with different levels of refinement in the
throat region. Our main interests in this study were to investigate the normal stress
distribution in front of the crack tip, and to calculate the rotation angle of a hinge.
The obtained results for the normal stresses show a stabilising behaviour after a certain
level of the refinement in the throat region. The obtained results show qualitatively good
behaviour, but the calculated values of the peak stress and of the rotation angle are higher
than predicted by the engineering model.

7.2 Conclusions

The task of constructing a continuous coupling between an analytical and a numerical
solution for boundary value problems with a singularity was remaining unsolved for many
years. In this thesis we have proposed a new strategy which leads to the desired continuity
between the two solutions. Instead of working only with numerical simulations we have
proven all important steps for the proposed C0 continuous coupling.

The main interpolation theorem, which is the basis of the continuous coupling, was
proved in two ways, which were used in the error estimation process. The constructed
proofs show difficulties which one has to face by working with the basis functions different
to the standard set of the well-studied functions.

The error estimation proposed in the thesis considers two strategies. The most inter-
esting case is the second strategy – the case of a fixed radius of the analytical element.
This case is a new step in the finite element theory, because the classical theory cannot
work for elements of a fixed size. Moreover, this strategy allows to define clearly the
coupling error, which can be used to assess the quality of the coupling. To our knowledge
this is the first mathematical attempt to assess the quality of a such coupling.

The considered numerical examples show promising results and confirm the potential
of the proposed method. The adaptivity of the proposed method is one the most impor-
tant ingredients for a practical use of the method. The possibilities to choose different
combinations of the basis functions, vary the number of the coupling elements, vary the
radius of the analytical element, underline the potential provided by the construction of
the continuous coupling.
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7.3 Open questions for future research

The work which has been done on the thesis clearly show the next steps in the research
regarding to the proposed method.

One of a possible directions is to study more the coupling error: one can try to obtain
the optimal node distribution to minimize the coupling error. Perhaps one needs to think
about an alternative error estimate which will lead to a sharper bound.

Other possible strategies for the refinement of the special element have to be studied.
Instead of using the shape parameter criterion one can fix the angle opposite to the curve
edge for each refinement. One can ask a question about the optimal refinement: to find
a strategy which will lead to the lower computational cost and will provide an easy way
for a global or a local refinement.

To perform more numerical simulations with different versions of the method one needs
to think about an efficient implementation of the proposed scheme. The implementation
which was used in the thesis was motivated by scientific interest to make only first nu-
merical simulations, because before finishing the theory of the method one cannot start
to program it efficiently. But now one can start to think about higher-level programming
languages and efficient algorithms.

Based on the results of simulation one can try to proof a general existence of the
optimal combination between integer and half-integer powers. For some more specific
examples one can try to find this combination and to prove it.

After clarifying the theoretical question one needs to make a comparison of the pro-
posed method with the known numerical methods, like X-FEM, FEM, GFEM, etc. This
comparison should be done on a test example and on a realistic example of a concrete
hinge. To judge about the results for the hinge one needs to finish first the work in the
direction of the Schwarz-Christoffel mapping for the hinge.

Finally one needs to start thinking about a possible generalisation of the proposed
method 3D problems. In this case the exact solution will be based on the generalised
Kolosov-Muskhelishvili formulae, but one needs to think carefully about a shape of the
coupling elements. Because the fracture process in 3D is much more complicated than in
2D, and the method should be able to provide a certain flexibility in it.
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[Babuška et al. 1996] I. Babuška and J.M. Melenk, The partition of unity finite element
method: Basic theory and applications. Computational methods in applied mechan-
ical engineering.139, 1996.
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[Moisil & Théodoresco 1931] Gr.C. Moisil et N. Théodoresco, Fonctions holomorphes
dans L’espace, Docteurs és sciences, á Paris, 1931.
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[Rössle 2000] Andreas Rössle, Corner singularities and regularity of weak solutions for
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Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.
Die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind
unter Angabe der Quelle gekennzeichnet.

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Ar-
beit nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von Vermittlungs-
bzw. Beratungsdiensten (Promotionsberater oder anderer Personen) in Anspruch genom-
men. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten
erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form
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