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Abstract

The use of electrified transportation is increasing, particularly regarding global
efforts to mitigate greenhouse gas emissions that contribute to climate change
and global warming. Questions regarding the integrity of catenary poles (used
to carry the overhead electrified wiring for electrified transportation systems)
still exist. This study contributes to verifying the characteristics of prestressed
spun-cast concrete catenary poles that support the catenary system along high-
speed train tracks. Using a stochastic uncertainty quantification framework,
this work utilizes the concept of data fusion to optimize the use of data derived
from multiple sources of data to verify the behavior of specified catenary poles
in service. Three sources of data are used: measurements from experiments
conducted on full-scale poles, detailed numerical models, and data recorded us-
ing the structural health monitoring system over four years. In this research,
a Bayesian sensitivity-based parameter identification approach is newley devel-
oped to estimate the actual material properties of the poles using measurements
from conducted experiments and numerical models. Implementation of this ap-
proach improved the quality of inferred parameters considerably. In addition, a
vibration-based status monitoring approach is presented that traces the status
of the pole over time. The proposed approach is characterized by ease of use and
rapid application, because the required inputs can be derived using simple signal
processing, or even using stochastic subspace identification techniques for more
informative data. The approach utilizes the benefits of data fusion in merging
the informative data from multiple sources and methods to increase the quality
and accuracy of the expected results. Further, the proposed approach is intro-
duced within a stochastic uncertainty quantification framework represented in
the Bayesian inference, which quantifies the uncertainty resulting from different
data sources and methods used in applying this approach. Consequently, the
proposed approach and the algorithms achieve the aims of this research by cre-
ating a mechanism to trace the status of the poles and provide an alarm when
damage occurs. Moreover, it identifies the location and severity of damage with
acceptable accuracy, even in cases of high levels of noise.
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Chapter 1

Introduction

1.1 Motivation

Today, electric transportation is one of the most promising solutions for mitigating the
effects of greenhouse gas emissions that contribute to climate change and global warming
[5, 6]. Besides their efficiency within the transportation system, electric trains are considered
one of the most eco-friendly and safest means of transportation [7, 8].

With an increasing global trend for reliance on electric transportation, Siemens recently
conducted a successful test of electrification of road freight. With the so-called eHighway
system, Siemens combines the efficiency of electrified rail routes with the flexibility of trucks
to create an innovative hybrid freight–transport solution: efficient, economical, and envi-
ronmentally friendly [9].

In electrified transportation systems, the electrical power supply is secured by a cate-
nary system installed along the transportation route. The catenary system ensures reliable
and stable power transmission even at high speeds (such as 330 km h−1 in the case of the
Intercity-Express (ICE) trains in Germany) [10]. Structural members known as catenary
poles suspend the catenary system supplying electric trains, playing a vital role in the entire
system, as any damage to one of these members leads to difficulties in the functionality of
the whole system. Therefore, questions about their integrity are essential [11].

Catenary poles are used worldwide to support power transmission, telephone and tele-
graph lines, street lighting, and overhead power lines for electric trains. For many years,
poles were made of wood, steel, and concrete [12]. Compared to other types of poles,
the prestressed spun-cast concrete poles became a more feasible, cheaper option, with a
longer operational life and lower lifetime costs [13, 14]. Recently, prestressed, spun-cast
ultrahigh-strength concrete catenary poles have been used widely for electric train systems;
for example, thousands of these poles have been installed along the high-speed train tracks
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in Germany [3]. In addition, this type of poles has been discussed as an alternative to
the current steel-lattice poles used in power transmission lines, in France, Denmark, the
Netherlands, Italy, and Germany, even for extra-high voltage transmission [15, 16].

Structural Health Monitoring is a challenging field of science, especially in civil en-
gineering, whereby important constructions are provided with monitoring systems that
permanently update the status of these structures, as in the case of protected historical
constructions. In addition, extending the operational lifetime of aging constructions means
such systems are necessary, as in the case of many bridges around the world. Furthermore,
attempts are being made to turn future constructions into so-called smart structures [17].

Working with SHM requires the combined efforts of several fields of science, such as
System Identification (SI), Damage Detection (DD), signal processing, machine learning,
Parameter Identification (PI), Uncertainty Quantification (UQ), and Design of Experiments
(DoE) [18]. Despite significant development in this field, there is still much to be done.
For instance, many methods have been developed for detecting and identifying damage
to certain structures, but these are still inefficient for the DD process for other types of
structures. One reason is that each civil structure has its own characteristic features, and is
intensively affected by its environment, surrounding boundaries, constantly changing applied
actions, material degradation, and more. The elements of interest in this study share some
characteristics with cantilever structures, such as power transmission lines, antenna masts,
chimneys, and wind turbines. However, they also have some distinctive characteristics such
as the presence of prestressing forces that close any relatively small cracks that may appear
[13].

For these reasons, insufficient attention has been paid to the behavior of catenary poles
in the literature, particularly for those used to support train systems. Given the cost of
installed poles and their importance to the functionality of these systems, further efforts
are needed to verify the life cycle and changes in behavior of these structures. Moreover,
a monitoring and early-warning algorithm is needed to track structural integrity over the
lifespan, providing early warning when damage is expected.

1.2 Aim of the Work

The aim of this study is to develop an approach for monitoring cantilever structures. The
pre-stressed, spun-cast ultrahigh-strength concrete catenary poles installed along high-speed
train tracks is chosen as a case study. Monitoring requires poles to be classified into damage
cases so that the location and severity of the detected damage can be identified after. Be-
cause of the vast number of poles that require monitoring, the proposed approach should be
efficient and easy to apply. To build the necessary monitoring algorithm, the actual mate-
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rial properties of the poles should be well known, achieved using the PI process, numerical
modeling, and an experimental program. In addition, it is necessary to study the behavior
of the un-damaged poles by analyzing the outputs of the SHM system attached to the poles
on-site. To achieve the primary goal of this study, the following objectives are defined as
follows:

1. To identify the actual material properties of the poles by developing a stochastic
uncertainty quantification framework based on Bayesian inference, the measurements
of multiple experiments, and finite element models.

2. To evaluate the existing status of the poles by implementing system identification
using data recorded through an SHM system installed with three poles along the train
track.

3. To develop a suitable monitoring algorithm for tracing changes in the behavior of the
poles. The algorithm should distinguish between the changes caused by long-term
material degradation and changes due to local damage to the pole.

4. To develop an appropriate stochastic damage identification algorithm that can local-
ize the anticipated damage on the pole and determine the severity of the damage,
which feeds the subsequent decision-making process with the required information to
maintain or replace the damaged pole.

1.3 Outline of the Dissertation

To achieve the objectives of this study, this dissertation is structured into three main parts:
the state of the art, the methodology and results, and conclusions and summary. In Part I,
the background and literature review for this work are presented in Chapters 2 and 3. Part
II contains the methodology, results, and discussion, presented in Chapters 4 to 8. Part III
contains the summary and conclusion of this study, as well as future research, presented in
Chapter 9.

Chapter 2 highlights the UQ and PI processes. The framework for UQ is detailed
by defining the modeling concept of probability theory. The PI approach is explained by
defining the concept of inverse problems and the methods available to solve them. Then, the
Bayesian inference is introduced for solving PI within a stochastic UQ frame. In addition,
different sampling approaches are described, such as the Metropolis-Hastings algorithm and
Markov Chain Monte Carlo method.

Chapter 3 provides the background of DD, SHM, SI, and signal processing. This chapter
begins by clarifying the concept of DD and the relevant methods for detecting and identifying
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damage in civil structures monitored using SHM systems. This is followed by more in-
depth information about the SI and vibration-based damage detection methods. Next, the
concepts of time and frequency domains within the signal-processing framework is presented.

Chapter 4 focuses on the PI process and the proposed approaches for identifying the
parameters of the structure of interest. This is followed by the proposed status detection
approach. Mainly, three algorithms are proposed: status monitoring, frequency-based dam-
age detection, and the curvature-based damage detection algorithms.

Chapter 5 begins by describing the case study used in this research together with a
historical background of prestressed concrete poles and catenary poles. The experimental
program and the experiments conducted within this work are also described. In addition,
the SHM system attached to selected poles on-site is presented. In addition, the results
of different experiments are analyzed and discussed, and details of the numerical modeling
techniques and the material constitutive models used in this study are outlined.

In Chapter 6, data recorded by SHM system sensors is analyzed to establish the existing
status of the poles over the specified time. Furthermore, SI is conducted using the data
recorded by the attached accelerometers. Two approaches are utilized for analyzing the
data: signal processing and Stochastic Subspace Identification techniques. Then, the results
are summarized and discussed.

Chapter 7 discusses the implementation of the proposed approaches of PI using the
measurements and numerical models of the poles. Moreover, the validation process of the
methods is presented. This chapter should be read in conjunction with Chapters 2, 4 and 5.

In Chapter 8, the proposed status detection approach is implemented. Then, the results
of each of the proposed algorithms are discussed. This chapter should be read in conjunction
with Chapters 3 to 6.

Chapter 9 summarizes the outcomes of this study and presents thoughts regarding fur-
ther research possibilities in the field of catenary poles and similar structures, namely in the
direction of PI, DD, and SHM.
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Chapter 2

Uncertainty in Engineering Models

2.1 Introduction

Uncertainty is a fascinating topic that spans many areas of our lives. The concept of
uncertainty is discussed intensely in most science disciplines, such as, engineering, physics,
economics, and decision theory [19]. Uncertainty is an aspect of our life that cannot be
avoided and occurs because of the limited knowledge and inability to control factors that
influence the phenomena around us [20]. The concept of uncertainty is closely associated
with probability and the measure theory. It arises due to the limitation of the understanding
of reality, and is represented by the probabilistic beliefs concerning the sources of uncertainty
[21]. UQ is the framework that predicts the uncertainty at the given phenomenon or system.

2.2 Uncertainty Quantification Framework

Uncertainty Quantification is a very active research area that studies the impact of uncer-
tainties on the prediction capabilities. Probability and the measure theory provide essential
tools for the quantitative mathematical treatment of uncertainty [22]. In predictive science,
UQ is defined as the process of identifying and quantifying the uncertainties associated with
models, numerical algorithms, experiments, and their predicted outcomes or Quantity of
Interest (QoI) [23].

In engineering science, the UQ process includes, but is not limited to, model verification
and validation, parameter identification, and inverse problems [24, 25]. Implementing the
UQ framework requires three essential pillars as shown in Fig. 2.1:

1. A pre-existing model that represents the system under consideration.

2. Identifying and quantifying sources of uncertainty that affects this system.
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3. Once the inputs and their uncertainties are identified, Uncertainty Propagation (UP)
transfers the uncertainty of the inputs into the measure of uncertainty in the outputs
of the considered model.

Input Model Output

Forward UQ

Inverse UQ

Fig. 2.1. Schematic UQ framework

However, applying UQ frameworks for large-scale applications requires a wide range of
supporting topics and combines several advanced mathematical disciplines. This includes
the theories of probability, statistics, and numerical analysis. This list can also extend to
include the approaches of parameter identification, calibration, verification, and validation.
Besides, UP requires additional techniques such as surrogate modeling, Sensitivity Analysis
(SA), Monte Carlo (MC) simulation, Latin Hypercube Sampling (LHS), and more [24].

2.2.1 Probability Philosophy

The UQ can be understood as the association of probability theory and statistical practice
with the real world. In other words, probability is the mathematical language for expressing
the uncertainty. In this sense, a closer examination of the probability concept is needed for
a deeper understanding of uncertainty [26].

Probability, in general, is related to the degree of belief that something is true. This
is strongly related to the available information about the considered problem. Engineering
society divides the information into two types: objective and subjective. The former is
information based on experimental results or observations, whereas the latter is based on
experience and data derived from similar problems [27]. This does not mean that subjective
information is an arbitrary term. Different people may offer different information about
a given problem, but when they update their beliefs, they will ultimately obtain a good
agreement [28]. Consequently, we should distinguish here between two interpretations of
statistical probability: Frequentism and Bayesianism [29].

Frequentists use the classical interpretation of aleatory (from Latin alea, meaning dice).
Their interpretation of probability means the expected frequency over many repetitions of
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x

CR

Fig. 2.2. Confidence intervals (left) vs. credible region (right)

independent and identical experiments. Hence, they use objective information and con-
sider unknown parameters to be deterministic and fixed. Parameters are estimated through
statistical estimators, such as the Maximum Likelihood Estimator (MLE).

The frequentist approach evaluates the confidence in the estimator by using the Confi-
dence Interval (CI). This means for a selected confidence interval, for example 95%, when
repeating an event many times, and the 95% intervals are calculated each time, 95% of the
cases of the computed confidence interval will contain the true value of the parameter x as
illustrated in Fig. 2.2 (left). In this sense, additional steps are needed to propagate and
quantify the parameter uncertainties [30].

In contrast, the Bayesian approach extends the probability interpretation to the degree
of belief or certainty about a statement. Then, probability is subjective as it is related to
their own knowledge about an event and can be updated as new data is available. This
is sometimes called epistemic (from the Greek epistẽmẽ, meaning knowledge) or inverse
probability.

In Bayesian inference, parameters are inferred in the form of probability densities, which
reflect their uncertainties directly without any additional efforts. The basis of this approach
is the law of conditional probability, or so-called Bayes’ rule, which is explained in detail
in Section 2.8.1. This combines subjective information (i.e., a priori), with the gained
objective information from observations.

The Bayesian approach uses the Credible Region (CR) that is shown in Fig. 2.2 (right).
This means that for the observed data of events, there is a 95% probability that the real
value of the parameter lies within the credible region. This makes Bayesian probability
closer to engineering thinking than that of the Frequentist approach [31].

2.2.2 Modeling Concept

Historically, the main goals of engineers and scientists have been to interpret, predict, and
control natural and human-made systems. This usually involves the development of a re-
duced system, or so-called predictive model, that maps the given system using the data
acquired through experience, experiments, and theories to explain the observations of the
real system. The intention is for the model to link the output variables of the related system
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causally, or the QoIs, to a set of input variables [19, 20].
Fig. 2.3 depicts the schematic flow chart of the modeling process. The first step is to

build a conceptual model through system abstraction. In this step, the available information
is collected to define and analyze the system, and to predict its behavior and performance
[27]. In the next step, two types of models are built: first, the physical model, or so-called
experimental model; and second the computational, or so-called mathematical model.

Real System

Conceptual
Model

Abstraction

Physical Modeling Computational Modeling

Design of
Experiment

Mathematical
Model

Numerical
Model

Simulation
Outcomes

Conducting Experiment Implementation

UQ

Measurements

Experimental
Data

UQ

UQ and
Parameter Identification

Agreement?

Quantity of
Interest

Yes

No

Revise
Model

Verification

Fig. 2.3. Schematic flow chart of modeling [1].

The experimental model can be a reduced-scale model of the original system, or in some
cases a full-scale model. Recently, it has become common to use the SHM systems that
are attached to the real system on-site to trace its actual behavior. The measurements or
observations are the outputs of the experimental model used to improve understanding of
the system under investigation. Because the instruments are not perfect in most cases, more
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2.2 Uncertainty Quantification Framework

uncertainties are added to the model.
In contrast, the computational model is usually built using mathematical functions, es-

pecially differential equations, and physical laws. This model represents the response of the
physical system and includes materials, initial conditions, and the boundary condition of
the system. It is quite common for these numerical approximations and solutions (such as
the Finite Element Method (FEM)) to be used in these models. The verification process of
the numerical models is essential to ensure that they represent the computational models
with some uncertainties. Both the computational and numerical models need to be vali-
dated to the experimental models. The validation process indicates the degree to which the
conceptual model represents the real system [1, 32].

Engineers, in most cases, build surrogate models to overcome the heavy computations of
the numerical models. In this sense, regression models are good alternatives, and are widely
used. However, regression models are verified against the results of numerical models to
ensure their accuracy. This is done, for example, by calculating the Root Mean Squared
Error (RMSE), the Coefficient of Determination (CoD), and the Predicted Coefficient of
Determination (PoD). The type of regression model is selected based on the complexity
and nature of the numerical model. In simple cases, the polynomial regression is used to
create a linear or non-linear parametric regression model [33]. In more advanced cases, the
non-parametric regression model is implemented, for example, [34], Extended Kalman filter
[35], Polynomial Chaos [36], and Artificial Neural Networks (ANN) [37].

2.2.3 Uncertainty Sources

Identifying uncertainty sources is a challenging task, because of the lack of knowledge about
the relevant system. Despite this, it is a fundamental task for understanding the impact
of the uncertainties that affect the given system [28]. The uncertainties of the model arise
from two sources: model discrepancies and uncertainties in the inputs.

At the level of the conceptual model, uncertainty propagates from limitations of the
human perception of reality, and increases due to simplifications and abstractions of the
real system. Experimental uncertainties can include (but are not limited to) human errors,
limitation of the instruments and sensors, uncontrolled environmental conditions and errors
of experimental setups. Numerical uncertainties originate from limitations of computational
and numerical models, limitations in the accuracy of algorithms, numerical discretization,
systematic and stochastic uncertainties of the input parameters, and approximation errors
[23].

11
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2.2.4 Uncertainty Types

There is no concept for classifying types of uncertainty. Based on causality, the uncertainty
is classified into forward and inverse uncertainty quantification. The forward type is applied
when the uncertainty of the inputs can be quantified and used to estimate the uncertainty
of the outputs. The inverse uncertainty is essential when the uncertainties of the outputs
are used to infer the uncertainties in the inputs [26].

When the uncertainty of a model is recognizable and quantifiable, the framework of
probability mentioned above can be used efficiently to represent it. In this sense, it is
common in engineering to divide the uncertainty into two main types: aleatoric uncertainty
and epistemic uncertainty [38]. Aleatoric uncertainty describes the natural randomness of
the given system and is usually defined in a probabilistic framework. It is inherited from
the considered model and is, in principle, irreducible. In contrast, epistemic uncertainty is
propagated due to the simplifications of the model and the lack of completed knowledge.
In this regard, epistemic uncertainty can be reduced by enhancing new knowledge and
expanding system resources [27].

Moreover, the UQ framework is usually solved using deterministic or probabilistic ap-
proaches. In the deterministic approach, linearization techniques (such as Markov esti-
mator), are utilized to identify the uncertainty of the QoI. Furthermore, two probabilistic
approaches are used to solve the UQ framework: the classical or Frequentist approach, and
the Bayesian approach. The forward probabilistic approach describes uncertainty measures
by transferring uncertainty in the inputs to the outputs using the probabilistic model. The
Bayesian approach has a great advantage as it allows for consideration of the prior knowl-
edge of the inputs [19]. For its efficiency, the Bayesian approach is used in this study to
identify unknown parameters, and simultaneously to quantify the uncertainty.

2.3 Probability Theory

Let me begin with a brief review of measure theory and calculus-based probability. Such a
fundamental review is essential for a better understanding of some terms, such as random
variables, moments, and density functions [39, 40, 41].

The probability space is a triple (Ω,F ,P). Here, Ω is a sample measure space, or the
set of possible outcomes ω ∈ Ω of some random experiment. The σ-algebra F ⊆ 2Ω is
defined as a set of subsets of Ω, called events, such that the subsets of Ω that includes Ω

itself, is closed under complement, and is closed under countable unions. The event space
F represents the set of observable sets of outcomes. Finally, P is a probability measure,
also called a probability space, satisfies that probability of union of disjoint events being
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equal to the sum of the correspondent events. The probability measure P assigns a number
to each event contained in F , for example, P : F → [0, 1] is a function on F with P(∅) = 0

and P(Ω) = 1, where ∅ is the empty set.
If we think of a sample space Ω as a set of all possible random outcomes of some

experiment, then a random variable assigns a numerical value to each of these outcomes.
Then, a random variable is a function X : Ω→ R, such that

{ω ∈ Ω;X(ω) ≤ x} ∈ F , x ∈ R.

This is equivalent to saying that X−1(B) ∈ F for every Borel set B, where Borel sets are
the sets that can be constructed from open or closed sets by repeatedly taking countable
unions and intersections. Then, for any Borel set B, it is reasnoble to talk about P(X ∈ B),
the probability that X lies in B. The distribution or law of X is the function µ defined on
B, the Borel subsets of R, by

µ(B) = P(X ∈ B) = P(X−1(B)), B ∈ B.

Then, µ is the law of a random variable and (R,B, µ) is a valid probability triple, in
other words, X ∼ µ, to indicate that µ is the distribution of X. Defining the Cumulative
Distribution Function (CDF) of a random variable X by

FX(x) = P(X ≤ x), for x ∈ R,

the function F is right-continuous and a non-decreasing function of x, with limx→∞ FX(x) =

1 and limx→−∞ FX(x) = 0.
Given a probability triple (Ω,F ,P) and X is a random variable having distribution µ,

then, for any Borel-measurable function f : R→ R, the expectation value E(.) of the random
variable X is defined as the Lebesgue integral, such that

EP[f(X)] = Eµ(f) =

∫
Ω
f(X(ω))P(dω) =

∫ ∞
−∞

f(x)µ(dx).

In other words, the expected value of the random variable f(X) with respect to the proba-
bility measure P on Ω is equal to the expected value of the function f with respect to the
measure µ on R. For the continuous case, a Probability Distribution Function (PDF) π is
similarly defined as a Borel-measurable function, such that π > 0 and

∫∞
−∞ π(x)dx = 1, then

E[f(X)] =

∫ ∞
−∞

f(x)π(x)dx.

13
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Similarly, the probabilities PX(B) can be also rewritten in a way involving the density
function as PX(B) =

∫
B π(x)dx.

2.4 Predictive Model

2.4.1 Model Definition

For given input parameters x ∈ X with a model parameter space X ⊆ Rm, the outputs of
the predictive model are y ∈ Y with an output space Y ⊆ Rn. Using a forward operator G,
the mapping from the input parameters x to the outputs y defines the forward model M,
such that

M : X → Y
x 7→ y = G(x) .

(2.1)

G is called a function when the inputs x and the outputs y are vectors [42]. This operator
G can have different types, namely UQ, Partial Differential Equation (PDE) and their
numerical approximation, or system of algebraic equations in a linear or nonlinear form.
Here, Eq. (2.1) is appropriate for UQ through the deterministic framework [43].

Considering the probabilistic framework of the UQ, the input parameters x are modeled
as random variables X that have the probability distribution PX with PDFs π(x). This
means that the outputs y are also random variables Y that have the probability distribution
PY . Then, the model in Eq. (2.1) can be written as follows:

M : (X ,B(X ),PX)→ (Y,B(Y),PY )

X 7→ Y = G(X) ,
(2.2)

this forward probabilistic model is illustrated in Fig. 2.4.

2.4.2 Model Imperfection

No mathematical model can perfectly represent the response of the real system. It is more
convenient to rewrite Eq. (2.1) in this form: y = G(x) + ηG , where ηG represents the
discrepancy between the model prediction and the real system.

Furthermore, in engineering applications, y represents the ’real’ observations of the given
system, which practically cannot be measured due to the uncertainty of the experimental
models and SHM systems. Then, the measured observation ỹ = y + ηy, where ηy is the
discrepancy between the response of the real system and the measurands. Now Eq. (2.1)
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Fig. 2.4. A forward probabilistic model

can be written, such as
ỹ = G(x) + η , (2.3)

where η = ηy + ηG is the total prediction error [44]. However, the researches widely cover
the quantification of ηy and ηG , for example, [45, 46], which are not a part of this study.

2.5 Inverse Problems

2.5.1 Definition and Problems

In many engineering applications, the observations of the system ỹ ⊆ Rn can be measured
without knowing their inputs x ⊆ Rm. In this case, given the forward operator G and the
observations ỹ, the inputs to be inferred are such that Eq. (2.3) holds. This type of inverse
problem is referred to by engineers as a PI process [47, 48].

Based on the number of observations n and the unknown inputs m, these inverse prob-
lems can be over-determined when n > m or under-determined in case of n < m. In the
former case, the solution of the inverse problem that satisfies all the outputs mostly does not
exist [49]. In contrast, the uniqueness of the solution is the typical challenge of the latter
case. Moreover, the sensitivity of the parameters plays a vital role in finding the solution of
the inverse problem. The sensitivity makes the solution unstable, as a small change in the
inputs x can lead to a significant change in the estimated model [22, 50].

The problem is considered as a well-posed problem if it fulfills the triple: existence,
uniqueness, and stability. Practically, inverse problems are ill-posed as they mostly suffer
from one or more of the three-mentioned causes. Solving inverse problems becomes harder
due to imperfection of the model, uncertainties, and noisy measurements [43]. In the fol-
lowing sections, it is shown that one useful possibility to overcome these difficulties is to
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utilize some informative priors. These regularization techniques are vital not only when us-
ing the deterministic framework, but also in the probabilistic framework, as in the Bayesian
approach.

2.5.2 Deterministic Solution

Inverse problems can be solved using the least-squares approach, by minimizing the residuals
between the observations and the model prediction. Then, the inferred parameters x̂ can
be written as follows:

x̂ = argmin
x∈X

‖ỹ − G(x)‖2Y . (2.4)

The regularization technique, (for example, Tikhonov regularization), can efficiently
treat the ill-posedness of inverse problems by adding the prior knowledge of the input pa-
rameters x0 ∈ V with V ⊆ X [42]. Then, the solution is derived by minimizing the function

J (x) := ‖ỹ − G(x)‖2Y + α ‖x− x0‖2V , (2.5)

where α > 0 is the regularization coefficient, which can be determined using different meth-
ods, such as the L-curve method [50, 51].

Moreover, it is common in practice to re-weight the residuals using an operator Q : Y →
Y such that Q is self-adjoint and positive-definite. By selecting the prediction error η in
Eq. (2.3) to have zero mean, Q represents the covariance matrix of η. Similarly, a self-adjoint
and positive definite operator R : X → X can be used to re-weight the regularization part
of Eq. (2.5) [26]. This changes it into

J (x) :=
∥∥∥Q−1/2(ỹ − G(x))

∥∥∥2

Y
+ α

∥∥∥R−1/2(x− x0)
∥∥∥2

X
. (2.6)

The inferred parameters x̂ are the minimizer of the function J in Eq. (2.6), such that

x̂ = argmin
x∈X

J (x) . (2.7)

2.6 Deterministic Approach of UQ

In the deterministic approach of UQ, parameters uncertainty is represented by the covariance
matrix of the identified parameters x̂ by minimizing the residual part

∥∥Q−1/2(ỹ − G(x))
∥∥2

Y
in Eq. (2.6). To evaluate the covariance matrix of the parameters, local sensitivities si =
∂Ĝ
∂xi

are estimated by linearizing the nonlinear relation between the parameters and the
observations at the optimal point, or the so-called Markov estimator [52, 53].
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Confidence in the parameters is proportional to the entries on the main diagonal of the
so-called Fisher information matrix or sensitivity matrix M . Then, the higher the value of
M , the higher the confidence [33].

M :=
m∑
i=1

Ĝ′(xi)T Q−1 Ĝ′(xi) , (2.8)

where Q is the covariance matrix of the observations. It can also be estimated by the
inverse of the information matrix M−1, and applying Cramér-Rao-Inequality, the so-called
variance-covariance matrix

C �
(

m∑
i=1

Ĝ′(xi)T Q−1 Ĝ′(xi)
)−1

, (2.9)

the symbol � is understood in the sense of A � B if xTAx ≥ xTBx, ∀x.
Then, the CIs of the parameters are proportional to the diagonal entities Cii of the covariance
matrix C [54]. Then, the probability exists that

| xexacti − xcomputedi | ≤
√
Ciiχ2

m(1− α), i = 1, · · · ,m (2.10)

is larger than (1−α), where χ2
m(1−α) denotes the (1−α) of the χ2

m probability distribution.
The smaller the right-hand side of Eq. (2.10) the more reliable the identified parameter can
be assumed [55].

2.7 Classical Probabilistic Approach of UQ

The Frequentist approach mostly uses the MLE to estimate the unknown parameters. To
define the likelihood function, the observations are considered as a random variable Y =

{Y1, · · · , Yn} associated with the PDFs πY (y;x), where y = {y1, · · · , yn} are the realizations
of Y . The unknown parameters x are considered as real numbers. Hence, the uncertainty
of the estimated parameters x̂, which are likely close to x, are evaluated using the CIs, as
mentioned before in Section 2.2.1. The likelihood function L is defined such that

Ly(x) = L(x|y) = πY (y;x) . (2.11)
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Assuming random variables Y to be independent and identically distributed (iid), the like-
lihood function in Eq. (2.11) is estimated as follows:

L(x|y) =
n∏
i=1

πYi(yi;x) . (2.12)

The unknown parameters are considered, from the Frequentist point of view, as the param-
eters that make the observed data more likely [51]. They are the maximizer of the likelihood
function

x̂MLE = argmax
x∈Rm

L(x|y) . (2.13)

Practically, it is more convenient to deal with log-likelihood lnL(x|y). Equivalently, the
estimated parameters x̂MLE are the maximizer of the lnL(x|y) such that

x̂MLE = argmax
x∈Rm

lnL(x|y) . (2.14)

Now, the MLE is incorporated to solve the inverse problem of Eq. (2.3) by assuming the
random variables of the errors E to be iid. E is associated with a selected PDF πE(η;θE)

that depends on the error parameters θE and has a zero-mean E(η) = 0; for example,
E ∼ N (0,σ2

η). Then, the likelihood function L in the Eq. (2.12) can be written as follows:

L(x|ỹ,θE) =
n∏
i=1

πE(ỹi − Gi(x);θE) , (2.15)

and this equation plays a vital role in solving the probabilistic inverse problems for both
the Frequentist and the Bayesian frameworks [56].

2.8 Bayesian Approach for Uncertainty Quantification

2.8.1 Bayes Theorem

Let (Ω,F ,P) be a probability space. Bayes’ rule defines the conditional probability that a
proposition A ∈ F occurs, given that a proposition B ∈ F occurred such that

P(A|B) =
P(B|A) ·P(A)

P(B)
, for P(B) > 0 . (2.16)

In this sense, the Bayesian framework includes a degree of belief through the term P(A),
which is named the prior. The term P(B|A) is a function that quantifies the likelihood of
event B’s occurrence, given that A is true. The posterior density P(A|B) quantifies the
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degree of belief having accounted for B. Eq. (2.16) forms the main core of Bayesian inference
[57].

2.8.2 Bayesian Inverse Problems

The Bayesian approach, as a probabilistic framework of the UQ, overcomes the difficulties
of solving inverse problems by considering the stochastic model of Eq. (2.3) such that [22]

Ỹ = G(X) + E . (2.17)

This is achieved by considering the observations as random variable Ỹ ∈ Rn, which has
the probability distribution PỸ with a PDF π(ỹ) > 0. The unknown parameter X ∈ Rm

is a random variable with a prior density πX(x) = π0(x). The error E ∈ Rn is a random
variable that is mutually independent of X and has a probability distribution PE with an
appropriate density πE(η) [58]. The joint probability density π(x, ỹ) is defined as follows:

π(x, ỹ) = π(ỹ|x) · π0(x) .

Now, as in Eq. (2.16), the posterior probability distribution of X given the observed data
Ỹ is written such that

π(x|ỹ) =
π(x, ỹ)

π(ỹ)
=
π(ỹ|x) · π0(x)

π(ỹ)
. (2.18)

Thus, Eq. (2.18) shows the four-pillars for solving inverse problems in the Bayesian approach:
the posterior π(x|ỹ), the likelihood π(ỹ|x), the evidence π(ỹ), and the prior π0(x).

The prior density π0(x) represents any available knowledge of the system before the
data are collected. This can be retrieved from similar systems or prior experience. However,
it is recommended to use a non-informative prior (sometimes called a vague prior), such
as uniform density and Jeffreys’ prior, unless good prior information is available, as the
posterior density can be strongly deviated by using the incorrect prior.

Nevertheless, the prior can be built into a hierarchical model based on the observed
data. In this case, the unknown parameters x are modeled conditionally on unknown
hyper-parameters θX of a given probabilistic distribution π(θX), which makes the prior to
be π0(x;θX) and increases the number of inferred parameters [59]. Substituting this prior
in Eq. (2.18) gives

π(x,θX |ỹ) =
π(ỹ|x,θX) · π0(x,θX)

π(ỹ)
. (2.19)

Additionally, choosing a conjugate prior, that is, assigning a prior density π0(x) such
that the posterior π(x,θX |ỹ) belongs to the same distribution family that contains the prior,
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has the practical advantage of making the results more understandable and computationally
more convenient [60].

The likelihood π(ỹ|x) is a function of y with x fixed. To evaluate this, the Bayesian
approach utilizes the concept of maximum likelihood from the Frequentist approach. This
means that the specifications of the likelihood are based on the error model, see Eq. (2.3),
which leads to π(ỹ|x) := π(ỹ−G(x)), in other words π(ỹ|x) ≡ L(x|ỹ). Thus, the approach
in Section 2.7 can be utilized here [61].

The denominator of Eq. (2.18), the so-called evidence, is independent of x and represents
the probability density of ỹ for all values of x. Hence, it is considered as a normalization
constant and evaluated by the integral over all the possible joint densities of ỹ such as

π(ỹ) = z =

∫
Rm

π(ỹ|x) · π0(x)dx . (2.20)

As a result, the posterior in Eq. (2.18) is written as a statement of proportionality as follows:

π(x|ỹ) ∝ π(ỹ|x) · π0(x) . (2.21)

Finally, the posterior density π(x|ỹ) is a probability distribution that provides the full
information of the unknown parameters x, based on the observations y. In some case
studies, when only the statistical moments are required, for example, the mean and the
variance, as QoIs. Here, keep in mind that the normalization constant z should be included
to have the right values of QoIs. In other cases, the maximum a posteriori (MAP) estimator
x̂MAP or mode as statistically named is quantified. MAP represents the values of inferred
parameters with the highest probabilities of occurrence,

x̂MAP = argmax
x∈Rm

π(x|ỹ) , (2.22)

and in this case, there is no need to calculate the normalization factor z [57].
One of the challenges of the Bayesian approach is extracting information from the pos-

terior. Any parameter can be inferred directly through the marginalization of the posterior
over the rest of the parameters as follows:

π(xi|ỹ) =

∫
π(x|ỹ)dx∼i , (2.23)

where x∼i = (x1, · · · , xi−1, xi+1, · · · , xm) denotes the parameters except xi. In most cases,
this cannot be solved analytically without using other simplification methods, such as
asymptotic approximation [62]. Stochastic sampling routines can be utilized here to approx-
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imate this integral by sampling from the probability distribution in question, for example,
the MC integration, and importance sampling [37].

This becomes more difficult with higher dimensional probability distributions. Then,
the alternatives are the Markov Chain Monte Carlo (MCMC) algorithms. These are very
efficient in drawing the parameter distributions from the posterior, even those that are
complex and high-dimensional. To achieve this, the forward problem needs to be solved
many times, which makes this approach computationally expensive [36].

2.8.3 Markov Chain Monte Carlo

The MCMC method combines the Markov chain and MC integration for constructing chains
whose stationary distribution is the posterior. The densities of parameters based on the
observations are the realizations of the Markov chain. The MCMC uses the concept of
MC sampling and an acceptance criterion to build the Markov chain. The samples are
drawn from a proposed simpler distribution π∗(x). Then, they randomly move through
the parameter space to explore the regions of high probability. Moving between states xj
and xj+1 is defined based on the jumping distribution q(xj+1|xj) that depends only on the
current state xj [57, 63].

Many different MCMC algorithms have been developed over in recent years. Most are
mainly based on the probability of proposing the future state, for example, Metropolis-
Hastings (MH), Gibbs sampling, and Slice sampling. Unlike these algorithms, Hamilto-
nian/Hybrid Monte Carlo (HMC) adopts physically dynamic system based on Hamiltonian
dynamics in propagating the Markov chain. This allows the Markov chain to sample the
target distribution much more efficiently than other probability-based algorithms, which
results in faster convergence. However, the HMC requires the careful tuning of internal
parameters to decrease its computational cost, which makes it less popular [64].

2.8.4 Metropolis-Hastings

Because of its efficiency and simplicity, MH is a widely-used algorithm for sampling from the
posterior distribution of unknown parameters. MH is based on random-walk that starts from
some random initial state x0 drawn from initial condition distribution π0. The algorithm
uses a transitional distribution q, or so-called random walk kernel, to randomly move to a
proposed state x∗, given a current state [65].

Samples from the proposal distribution are not accepted automatically as posterior sam-
ples. MH utilizes the concept of rejection sampling to reject or accept the proposed state
x∗ with probability α = min(1, r). This denotes α = 1 if r ≥ 1 and with probability α = r

if r < 1, where r is the probability ratio, as shown in Algorithm 1. This means that the
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algorithm does not always move uphill towards the higher probability, but also goes downhill
to avoid being stuck in the local maximums. Simultaneously, the entire posterior density is
explored [66].

Algorithm 1 Metropolis-Hastings (MH) algorithm [56]
1: specify the number of the chain elements Ns

2: generate an initial state x0 ∼ π0

3: for j = 1, · · · , Ns do
4: generate a proposal state x∗ ∼ q(x|xj−1)
5: calculate the acceptance ratio

r =
π(x∗|ỹ)q(xj−1|x∗)
π(xj−1|ỹ)q(x∗|xj−1)

6: calculate the acceptance probability α = min(1, r)
7: sample u ∼ U(0, 1)
8: if (u ≤ α) then
9: accept x∗, set xj = x∗

10: else
11: reject x∗, set xj = xj−1

12: end if
13: end for

Most often, the multivariate Gaussian distribution is selected as a proposal jumping
distribution, namely, q(x∗|xj−1) ∼ N (xj−1,Σq), where the covariance matrix Σq defines
the jumping length [35].

2.8.5 Analysis of resulting MCMC Chain

For any MCMC method, the resulting chain to be inspected by answering some questions,
such as how to choose the appropriate jumping step; does the resulting chain have a station-
ary distribution that coincides with the posterior density; when can the chain be considered
as converged and when to stop the algorithm; and what is the degree of correlation between
the accepted samples.

It is crucial for the MH algorithm to assign an appropriate value to the size of the random
walk; that is, the variance σ2. The optimal step size depends strongly on the geometry of the
target posterior. Increasing the value of the step size ends with rejecting many candidates
x∗, where assigning a small value produces stagnation and makes the algorithm too slow.
Most of the literature advises optimization of the step size to get an acceptance ratio of
between 0.2 and 0.5. This also quantifies whether the algorithm is adequately sampling
from the posterior [23, 57].
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Assessing the convergence, or burn-in, of the MH algorithm is very important to assure
that the resulting chain has a stationary distribution. Theoretically, this can mainly be
reached within a sufficient large number of iterations, which is computationally demanding.
One of the methods of checking the stationarity and adequacy of the chain length is to rerun
the algorithm several times using different starting points. Consequently, the results can be
visually or statistically compared. In this method, the initial samples within the burn-in
period should be excluded when computing the parameter densities. Another method of
analyzing convergence is with statistical tests; for example, the Geweke, or Gelman and
Rubin tests, which are implemented in CODA library in R program [67].

The MCMC supposes that the resulting chain is a Markov chain. To assure this, and
knowing that the samples of the MH algorithm are not entirely random, the autocorrelation
of the samples should be checked. This can be reduced by eliminating some samples,namely
by retaining the kth sample of the produced chain, or so-called thinning. However, the
autocorrelation is inversely proportional to the convergence and the step size [43, 68].

Despite the efficiency of the MH algorithm to draw the posterior density, it is valid
only for evaluation of the first level of Bayesian inference. To evaluate the hierarchical
Bayesian models and overcome the drawback of the MH algorithm mentioned previously,
more advanced algorithms can be utilized. These include, but are not limited to, Gibbs
sampling, Nested sampling, reversible jump Markov Chain Monte Carlo (RJMCMC), and
Transitional Markov Chain Monte Carlo (TMCMC) [64].

2.8.6 Transitional Markov Chain Monte Carlo

Among MCMC algorithms, the TMCMC is a widely used algorithm for solving both levels
of the Bayesian inference, for example, parameter identification, model selection, and model
averaging problems. Because of its high efficiency, it is popular in engineering practice and
inspiring in the research field [64]. The TMCMC algorithm overcomes many of the MH
drawbacks that were mentioned in Section 2.8.5. Compared to the standard MH algorithm,
drawn posterior density using TMCMC has better quality with a smaller number of samples.
Besides, TMCMC is suitable for sampling from multiple models, estimating the evidence of
the Bayesian model class. It also overcomes the difficulty of sampling from complex models
[69]. These reasons offer motivation to utilize the TMCMC algorithm in this study.

The TMCMC adopts the idea of using a series of intermediate PDFs, proposed by Ching
and Chen [70], to sample the posterior in sequence by reweighting and resampling the
samples from each intermediate PDF. Instead of directly sampling from the target density,
TMCMC starts sampling from the prior π0(x). Then, in each of the following steps, it
uses intermediate PDFs until the posterior density π(x|ỹ) = πJ(x) is gradually reached
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Algorithm 2 Transitional Markov Chain Monte Carlo (TMCMC) algorithm [70, 72]
1: specify the number of the chain elements Ns

2: at j = 0 generate Ns samples at the initial state {x(0,1), · · · ,x(0,Ns)} ∼ π0, set j = 1
3: while pj < 1 do
4: optimize pj such as pj = argminp

(
|c.o.v.{L(x(j,ns)|ỹ)(p−pj−1)}Nsns=1 − ν|

)
,

5: p ∈ (pj−1, 1], ν = 100%, If pj > 1, then set pj = 1
6: for ns = 1, · · · , Ns do
7: compute the weighting coefficients ω(j,ns) = L(x(j−1,ns)|ỹ)(pj−pj−1), and the
8: normalized weights ω̃(j,ns) =

ω(j,ns)∑Ns
ns=1 ω(j,ns)

9: compute the mean of the weighting coefficients Sj = 1
Ns

∑Ns
ns=1 ω(j,ns)

10: compute the covariance matrix of the Gaussian proposed distribution

Σj = β2
Ns∑
ns=1

(
ω̃(j,ns)(x(j−1,ns) − x̄j) · (x(j−1,ns) − x̄j)T

)
11: where the user scale factor β = 0.2, and x̄j =

∑Ns
ns=1 ω̃(j,ns) · x(j−1,ns)

12: for l = 1, · · · , Ns do
13: set the candidate x∗(j,l) = x(j−1,l)

14: randomly samples from the set x(j−1,ns) with probability ω̃(j,ns), i.e.,
15: x∗(j,l) = x(j−1,ns)

16: for k = 1, · · · , Ns do
17: sample x∗ ∼ N (x∗(j,l),Σj)

18: sample u ∼ U(0, 1)

19: if u 6 πj(x∗)
πj(x∗

(j,l)
)
then set x∗(j,l) = x∗, otherwise do nothing

20: set x(k,ns) = x∗(j,l), set ω(j,l) = L(x∗(j,l)|ỹ)(pj−pj−1)

21: end for
22: end for
23: end for
24: set j = j + 1
25: end while
26: estimate the evidence ẑ =

∏m
j=1 Sj

[71]. In each step, a new Markov chain of samples is initiated from each of the previous
samples set using the MH algorithm. This is achieved using the random walk approach,
assuming a Gaussian proposal PDF centered at the current sample. The covariance matrix is
estimated by importance sampling using the samples of the previous step [70]. The proposed
transitional PDFs are written such that

πj(x) ∝ π0(x) · L(x|ỹ)pj , (2.24)
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2.8 Bayesian Approach for Uncertainty Quantification

where pj ∈ [0, 1] and the step number j = 0, · · · , J . The total number of the steps J
is reached when pJ = 1. The value of pj is optimized, such that the coefficient of varia-
tion of L(x|ỹ)(pj+1−pj) ' ν, where ν is a user-defined threshold. However, some important
modifications and improvements were added to the original TMCMC algorithm, such as
adjusting the sample weights, improving the burn-in period, and adjusting the acceptance
rate [73, 72]. The TMCMC algorithm is summarized in Algorithm 2.
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Chapter 3

Damage Inspection and Diagnosis

3.1 Introduction

The integrity of civil structures is usually maintained by periodic inspection procedures that
aim to detect any deterioration that might occur. Thus, this guarantees adequate safety
of the structure. By detecting deterioration at an early stage, repair procedures can be
performed on structures instead of demolition or replacement [74, 75]. Furthermore, some
existing structures are subject to higher load levels than they were designed for, as in the
case of increasing traffic loads on old bridges. Inspection practices lead to an increase in
the operational life span of structures, which has a significant economic impact, especially
in the case of infrastructure systems [76].

Inspection practices are generally divided into destructive and non-destructive. How-
ever, destructive practices are avoided when possible for civil structures. Non-destructive
practices include (but are not limited to) visual inspection, acoustic emissions, ultrasound,
magnetic particle, and radiography testing [77]. These methods are mostly efficient for the
inspection of deterioration within a localized area referred to as local damage [78]. Tech-
niques such as classical visual inspection practices can be subjective, costly, time-consuming,
and require trained experts, making them inefficient as a means of identifying invisible dam-
age [79]. In contrast, vibration-based practices work well for identifying global deterioration,
which makes it one of the promising methods in civil engineering, principally in the field of
DD [80, 81]. However, a combination of both practices is recommended, where vibration-
based practice is used for detecting and localizing the damage, and other non-destructive
practices can be used to verify the location and evaluate the severity of the damage [82].

Global vibration-based inspection practices verify the integrity of a structure, from
changes in its dynamic response to either service actions or an artificially introduced excita-
tion. Using SHM in conjunction with vibration-based damage detection approaches provides
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an efficient approach in the field of damage detection [83]. In addition, vibration-based in-
spection is an attractive inspection practice for detecting both global and local deterioration
of systems, as local damage mostly leads to a change in dynamic characteristics of the struc-
ture, which in turn can be an indicator of damage [84].

3.2 Damage Detection of Structures

Techniques for DD have been widely developed and implemented to assure the integrity of
structural and mechanical systems such as aircraft, rotating machinery, offshore platforms,
and bridges. In structural systems, damage is generally defined as changes to properties
of a given system that adversely affect its performance (such as changes to the properties
of materials, geometry, and boundary conditions) [74]. Damage inspection is hierarchically
classified into four levels: damage detection (Level 1), damage localization (Level 2), quan-
tifying damage severity (Level 3), and predicting the remaining life of the structure (Level
4) [84, 85].

It is common for the DD process to work in conjunction with closely related disciplines
such as SHM, statistical process control, and non-destructive practices to detect the onset
of damage or deterioration as early as possible so that the integrity of the system under
consideration can be maintained. Unlike temporally applied, traditional non-destructive
evaluation methods, SHM systems have become more popular and efficient for providing real
time inspection of civil structures. This is because of the rapid development of diagnosis
and classification techniques such as data-driven, machine learning and computer vision
techniques [86].

3.2.1 Structural Health Monitoring

The SHM system is based on a data acquisition system that periodically samples response
measurements from an array of sensors attached to the structure being monitored. Then, the
data interpretation process is achieved using diagnostic techniques. The structural condition
is assessed to evaluate the integrity of the structure, localize and quantify possible damages,
and take subsequent prevention actions, as well as to predict the remaining service life of
the structure.

Operational Modal Analysis (OMA), as a particular example of experimental modal
analysis, has been used extensively for identifying modal parameters of systems in engineer-
ing. Compared to experimental modal analysis, OMA has some advantages that make it
more pertinent for use in civil engineering [87, 88, 89]. When using OMA, the complete
structure of interest is tested under real operational conditions using ambient excitation
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without the need for artificial excitation, which makes OMA suitable for output-only iden-
tification of the system. Moreover, due to the natural presence of ambient excitation, OMA
is ideally suited to continuous monitoring of the system such as that used in vibration-based
SHM and DD of civil structures. However, OMA also has drawbacks; for example, it is not
efficient in low ambient excitation cases, and mode shapes derived using this method are
unscaled [90, 91].

Based on data provided by the SHM system, two approaches of DD processes are defined:
supervised and unsupervised. In the supervised approach, both the healthy and damaged
states of the structure of interest are known, and are consequently used to classify the state
of the structure based on newly recorded data. In civil engineering, it is most probable
that the unsupervised approach is used, as the available data describes only one class; that
is, the healthy state. In this case, any deviation from the healthy state of the structure
under monitoring is considered a change in its response and is consequently classified as a
damaged state [92].

Based on the nature of diagnostic techniques, DD processes are classified into data-based,
and model-based techniques. However, using a combination of both in a hybrid technique
offers the advantages of each whilst providing efficient cover for the four levels of the DD
process [93]. The data-based approach identifies the state of the structure of interest us-
ing tools such as signal processing and modern statistical tools. In the field of DD using
signal-processing techniques, methods have been introduced based on vibration’s signals
from sensors, empirical mode decomposition, and Hilbert-Huang transformation. These
methods are mostly able to detect damage at Level 1 and in some cases at Level 2, which is
insufficient for many practical applications [94]. Conversely, modern statistical tools (such
as auto-regression models, machine learning, artificial neural networks, and Gaussian pro-
cesses) train the data to build statistical models or patterns that represent possible states
of the concern structure [95, 96]. Then, the state of the structure is identified using pat-
tern recognition algorithms in supervised cases [97, 98]. In addition, algorithms like novelty
detection [99], outlier analysis [100], control chart methods [101, 102], and principal com-
ponent analysis (PCA) [103] are used for unsupervised cases. Besides the excessive time
needed in the data training process, modern statistical approaches are capable of practically
handling the DD at Levels 1–4, but only for supervised cases where both healthy and dam-
aged patterns of the structure are known; for example, in the field of aircraft and rotary
machines. However, in civil engineering damage patterns are usually unavailable, which
limits the efficiency of data-based approaches in this field to cover only the most basic level
of DD. Efforts are being made to extend efficiency so that the second level is also covered,
whereas the four levels of DD are well-covered using model-based techniques [104].
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3.2.2 System Identification

System Identification as a model-based DD technique is an inverse process of estimating the
dynamic characteristics of a structure using an appropriate model (commonly a FEM) and
measurements recorded by an SHM system, such as strain gauges and accelerometers [105,
106]. To begin, in a step called damage feature extraction, a set of damage features is defined
by choosing dynamic characteristics of the structure of interest that are highly sensitive to
its damaged condition [92]. Next, the set of selected damage features are identified; for
example, modal parameters such as natural frequencies, damping ratios and mode shapes.
These results are subsequently used to evaluate model parameters such as stiffness matrix,
mass matrix, and material properties of the structure [80]. Up to this point, one loop of a
model updating process is made. Successive loops are achieved using periodically recorded
measurements derived, for example, using an SHM system [107, 108].

The SI processes work in either a frequency or a time domain. The choice of the domain
is highly dependent on the nature of the problem, the dynamic characteristics to be iden-
tified, and the availability of input and output measurements. For instance, input-output
methods are less attractive in the case of large civil structures where the input is unknown
[84]. Among the different methods that have been developed in both domains, the most
practical and relevant methods for this study are discussed. Frequency domain methods
are principally based on the relation between the input and output PSD of a random pro-
cess [109]. However, the Frequency Domain Decomposition (FDD) method can only be
used in output-only cases. In this method, the Singular Value Decomposition (SVD) of
the output PSD in different frequencies is used as the mode indicator function. Besides
the simplicity and speed of application, this method works well with noisy data and close
modes [110]. In the time domain, subspace-based methods for identifying the state-space
of systems has gathered significant attention in civil engineering. From these methods, SSI
methods use the output-only measurements of a system subjected to stochastic excitation
in an operational situation [111]. Practically, two SSI approaches are used: data-driven SSI,
and covariance-based SSI. However, both approaches perform equally well concerning modal
parameter estimation performance [112].

In any system, inputs and outputs are required to identify its dynamic characteristics
during the SI process. However, determining the inputs for civil structures is often a difficult
task because these kinds of structures are usually subjected to environmental actions (such
as wind and ambient temperature), or varying loads (such as traffic loads on bridges). In
addition, it is difficult to excite such structures due to their large scale. Therefore, much
effort has been given to the development of output-only SI methods, which provides reliable
estimates of the dynamic characteristics of civil structures using only outputs of their system
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under ambient vibration and random environmental actions [113].

3.2.3 Uncertainty Quantification in Damage Detection

Each step involved in solving the DD problem has a level of uncertainty, such as the uncer-
tainty and noise of SHMmeasurements, and the discrepancy of models used in the SI process.
Therefore, UQ plays a significant role in the DD process and the subsequent decision-making
phase. As discussed in Section 2.8, Bayesian inference is an efficient approach for solving
the ill-posed inverse problems using noisy data and various sources of uncertainties, which
makes it a powerful approach to DD, SHM, and SI. For instance, Bayesian parameter esti-
mation is used in the domain of structural vibration-based parameter estimation [79, 114],
and in the fields of OMA and SHM as a probabilistic uncertainty approach [115, 116] for
model selection of linear and nonlinear dynamical systems [117], in the domain of DD and
model updating [118, 44, 119]. In addition to the already mentioned approaches, Bayesian
inference is a vital tool in the probabilistic data fusion field of study [120, 121]. Data fu-
sion combines information from multiple sources (such as multiple sensors or methods) to
enhance the efficiency of the damage detection process [74, 122]. For instance, the Bayesian
data fusion is used for integrating different kinds of sensors and multiple damage features
in DD problems [123, 124, 125].

3.3 Damage Modal Features

Modal parameters have been used intensively in global vibration-based approaches for solv-
ing DD problems. The basic idea is to track changes in the dynamic characteristics of
the structure of interest and use these changes to detect possible damage. A significant
amount of existing literature presents different DD methods based on modal damage fea-
tures; for example, methods are built based on changes in natural frequencies, modal damp-
ing, mode shapes and their derivatives, modal strains, modal flexibility, and modal strain
energy [80, 81, 92, 126, 127]. Each of the presented methods has some limitation based
on certain factors; for example, the sensitivity of the given system to the damage feature,
the location and severity of damage to be detected, the noise level, and the number and
type of sensors used in the attached monitoring system. The following discussion focuses
on the damage modal features based on the output-only, vibration-based approach of DD.
The methods most relevant to this research are duly presented.

The vibration of a viscously damp, linear structural system with N degrees of freedom
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is represented using the equation of motion such that:

[M ] {ẍ (t)}+ [C] {ẋ (t)}+ [K] {x (t)} = {f (t)} , (3.1)

where [M ] is the mass matrix, [C] is the viscous damping matrix, and [K] is the stiffness
matrix. The vectors of nodal displacement, velocity, and acceleration are represented by
x(t), ẋ(t), and ẍ(t), respectively. Term t is the time, and f(t) is the excitation force vector.
The matrices and vectors have an order of N in size, corresponding to the number of degrees
of freedom used in describing the displacements of the structure.

The eigenvalue equation of an un-damped system of the ith mode is given as follows:

(−λi[M ] + [K]) {φi} = {0} , (3.2)

where λi = ω2
i is the eigenvalue, and ωi represents the un-damped natural frequencies of

the system. Term {φi} is the eigenvector, or the ith mode shape of the system. Damage in
the system of interest leads to a change in the stiffness matrix [K] and/or the mass matrix
[M ]. Accordingly, dynamic characteristics (such as natural frequencies and mode shapes)
are changed. Such a change is the essence of the vibration-based DD process.

3.3.1 Natural Frequencies

The DD based on changes in the natural frequencies of systems, is one of the first methods
used in the vibration-based DD domain. Compared to other modal features, natural fre-
quencies are easy to measure using fewer sensors and greater precision. In addition, they
are less sensitive to location and smaller measuring errors. However, this method mostly
identifies Level 1 damage only. Moreover, they are sensitive to the noise level and the effects
of environmental actions on the given system [126, 81]. Recently, this method has regained
the interest of some researchers. For example, environmental and operational influences
on natural frequencies can be eliminated using kernel principal component analysis [128].
Furthermore, using Bayesian data fusion of multiple natural frequencies leads damage de-
tection to Level 1, with slightly less efficiency to Level 2 of DD [129]. Besides, shifts in
multiple natural frequencies provide spatial information about structural damage, because
changes in structure at different locations cause different combinations of changes in modal
frequencies [108].

3.3.2 Mode shapes

Compared to natural frequencies, mode shapes contain spacial information and are less
influenced by environmental effects, which makes them an excellent candidate for detecting
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damage at Level 2 [130]. This is usually achieved using Modal Assurance Criterion (MAC)
values, which measure the correlation between the modal shapes of the system in two states
to detect the damage at Level 1 when MAC values differ significantly from unity [92]. The
MAC values are calculated as follows [131]:

MAC
(
{φui }, {φdj}

)
=

∣∣∣{φui }T {φdj}∣∣∣2(
{φui }T {φui }

)(
{φdj}T {φdj}

) , (3.3)

where, {φui } and {φdj} are the vector of measured mode shapes ith and jth of two different
states of the structure of interest, namely, the un-damaged state u, and the damaged state
d.

The concept of MAC has been extended to Coordinate Modal Assurance Criterion (CO-
MAC), which verifies the correlation between modal displacements at measured degrees of
freedom. This extends the validity of this method to detect damage at Level 2. The CO-
MAC value of the qth degree of freedom and k number of measured mode shapes is written
such that [131]

COMAC
(

[φu], [φd], q
)

=

(
k∑
i=1

∣∣∣(φui )q(φ
d
i )q

∣∣∣)2

(
k∑
i=1

(
φui

)2

q

)(
k∑
i=1

(
φdi

)2

q

) . (3.4)

The COMAC values differ considerably from unity when comparing the damaged and un-
damaged state of a system. However, this method depends strongly on the quality of
measured modal displacements, the noise level, and the number of sensors used to measure
the response of the system of interest.

3.3.3 Modal Curvature

It is proven that the DD process is more sensitive to derivatives of the modal displacements,
such as the modal curvature, than the modal displacements themselves. The modal cur-
vature ν is the second derivative of the modal displacement φ. Having an array of sensors
attached to the structure of interest at equally-distributed spaces ∆ϑ, the modal curva-
ture (νi)p at coordinate p is numerically estimated using the second-order central difference
approximation [132]:

(νi)p =
(φi)p−1 − 2(φi)p + (φi)p+1

∆ϑ
, (3.5)
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where (φi)p−1, (φi)p, and (φi)p+1 are the measured modal displacements at three subsequent
coordinates. However, to use modal curvatures for DD, the modal displacements need to
be calculated with as much coordinates on the structure of interest as possible. In addition,
this method is sensitive to noisy measurements compared with other methods. Therefore,
the modal curvatures are optimal for damage localization at a low level of noise [82]. It
is recommended that another feature is used (such as natural frequencies) to detect the
damaged state, then the modal curvatures feature is the right candidate for localizing the
damage [127, 133]. Moreover, it is noted that using data fusion techniques to merge the
results of multiple measured modes can improve the quality of the modal curvature approach
considerably [125].

3.4 Stochastic Subspace Identification Method

Excitation is usually considered as white noise in the output-only linear system in civil
engineering. Given a discrete-time system with sampling interval ∆t, the subspace model
can be written as follows [111]:

xk+1 = Axk + wk

yk = Cxk + vk ,
(3.6)

where xk is a state vector that describes the system displacement and velocity at the instant
k∆t, and yk denotes the measured output vector. Terms wk and vk represent the system
and measurement noise, respectively. Thus, SSI solves the system by identifying the system
matrix A and the output matrix C form the output-only data, as it is shown later. Then, the
modal parameters of the system are derived from the eigenvalue decomposition of matrix A

as follows:

A = ΨΛΨ−1 =
n∑
k=1

ψkλkψk , (3.7)

where Ψ is the eigenvector matrix, and Λ = diag(λi) is the eigenvalues matrix. Term λk

denotes the eigenvalues of the discrete-time system. Accordingly, the eigenvalues of the
continuous system are calculated such that

λck =
ln(λk)

∆t
. (3.8)
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Consequently, the modal parameters of the system, that is, the natural frequency fk, damp-
ing ratio ζk, and the mode shape φk are calculated [134] as follows:

fk =
|λck|
2π

, ζk = −100
Re(λck)
|λck|

, φk = Cψk . (3.9)

Estimating the system matrix A starts with calculating the output covariance Ri with
time lag i∆t, which is factorized such that Ri = CAi−1G = E[yk+1 y

T
k ], where G is the

next-state output correlation matrix, G = E[xk+1 y
T
k ] [135]. Then, the block Toeplitz matrix

Tref
1|i is formed by multiplication of future and past measurements, and can be assembled

concerning subset reference sensors (ref) [136] as follows:

Tref
1|i =


Rrefi Rrefi−1 · · · Rref1

Rrefi+1 Rrefi · · · Rref2

· · · · · · · · · · · ·
Rref2i−1 Rref2i−2 · · · Rrefi

 . (3.10)

The block Toeplitz matrix Tref
1|i can be factorized into the extended observability matrix Oi

and the reserved extended stochastic controllability matrix Γrefi such that

Tref
1|i = OiΓ

ref
i =


C

CA

· · ·
CAi−1


[
Ai−1Gref · · · AGref Gref

]
. (3.11)

The singular value decomposition is used to reduce the block Toeplitz matrix Tref
1|i as follows:

Tref
1|i = USV T =

[
U1 U2

] [S1 0

0 S2 ' 0

][
V T

1

V T
2

]
= U1S1V

T
1 , (3.12)

where S1 is a diagonal matrix containing the singular values in descending order. Using
Eqs. (3.11) and (3.12), the matrix Oi and the matrix Γrefi are written such that Oi = U1S

1
2
1 ,

and Γrefi = S
1
2
1 V

T
1 . Then, the output matrix C can be determined as the first l rows of the

matrix Oi. The system matrix A is calculated using the matrix Oi [137] as follows:

A = Oi
†Oi , (3.13)

where Oi denotes the matrix Oi without the last l rows, Oi is the matrix Oi without the
first l rows, and † denotes the pseudo-inverse.
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The key point in the SSI method is to determine the model order n. Theoretically, the
model order equals to the number of nonzero singular values of Teoplitz matrix, which is
practically not the case, due to the noise, non-stationarity, and non-linearity of the data. To
overcome that, stabilization diagram and stability criteria to natural frequencies, damping
ratios, and mode shapes are used to identify the stable solution [138].

3.5 Signal Processing for SHM

3.5.1 Frequency Domain

Defining the signal as a function f(x), where x is an independent variable defines the domain
of the signal, for example, in the time-domain. Thus, a signal in the time domain x(t) defined
on the interval [−τ2 ,

τ
2 ] is represented using exponential Fourier series as follows:

x(t) =

∞∑
n=−∞

cn e
inωt , (3.14)

where ω = 2π/τ is the fundamental frequency of the period τ , and i is the imaginary units of
the complex number, such that i2 = −1. The spectral coefficients cn are defined as follows:

cn =
1

τ

∫ τ
2

− τ
2

x(t) e−inωt dt. (3.15)

Using this and by rearranging terms, the Fourier transform F is obtained as follows [139]:

F [x(t)] = X(ω) =

∫ ∞
−∞

x(t)e−iωtdt , (3.16)

where X(ω) is a frequency-domain of signal x(t), which is often referred to as a spectrum.
The inverse Fourier transform F−1[X(ω)] allows the time-domain to switch back as follows:

F−1[X(ω)] = x(t) =
1

2π

∫ ∞
−∞

x(ω)eiωtdω . (3.17)

3.5.2 Fast Fourier Transform

Storing a continuous signal on a computer requires infinite memory. Usually, the signals col-
lected by sensors are digitized, or in other words, they are stored in the form of discrete-time.
By sampling the continuous signal at regular intervals, such as ∆t seconds apart, the signal
x(t) can be written as a finite vector of N samples, such as x(t) = {x0, · · · , xr, · · · , xN−1},
where xr = x(tr) = x(t0 + r∆t), r ∈ N. Considering the reference time t0 to be t0 = 0, the
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time tr becomes tr = r∆t.
The Discrete Fourier Transform (DFT) is an essential tool used in the field of digital

signal processing to derive a frequency-domain (spectral) representation of the signal. A
discrete signal defined on [−τ2 ,

τ
2 ] is decomposed into a series of periodic signals using an

exponential Fourier transform [140], as follows:

x(t) =
∞∑

n=−∞
cn e

2πi(nτ )t . (3.18)

The spectral coefficients cn are calculated, such that:

cn =
1

τ

∫ τ
2

− τ
2

x(t) e−2πi(nτ )t dt. (3.19)

Using the concept of DFT and considering τ = N ·∆t, the spectral coefficients cn are written
as follows:

cn =
1

N

N−1∑
r=0

xr e
−2πi(nrN ) . (3.20)

The FFT is an efficient algorithm for the computation of the DFT coefficients, which
exploits the computational redundancy in the equations defined by the DFT. The FFT algo-
rithm reduces the required number of operations to N log2N , compared with N2 operations
in the case of using the DFT [141].

The frequency-domain of the perfect time-domain input-output system S is defined such
that

Y (ω) = H(ω)X(ω) , (3.21)

where X(ω) and Y (ω) are the FFT of the input signal x(t) and output signal y(t), re-
spectively. The Frequency Response Function (FRF), denoted as H(ω), turns the relation
between the input signal and the response of the system in the frequency domain into a
simple multiplication compared to the system S in the time-domain.

It is more convenient, especially for random signals, to represent the spectrum X(ω) by
averaging the squared spectrum, or the PSD, denoted as Sxx(ω), which is defined as follows:

Sxx(ω) = E[|X(ω)|2] = E[X(ω)X(ω)∗] . (3.22)

In the same manner, considering two signals x(t) and y(t), the Cross-Spectral Density (CSD)
Syx is defined, as follows:

Syx(ω) = Y (ω)X(ω)∗ . (3.23)
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Thus, the FRF is re-estimated as

H(ω) =
Syx(ω)

Sxx(ω)
, (3.24)

or in another form as follows:

Syy(ω) = |H(ω)|2Sxx(ω) . (3.25)

Generally, any system S has noise on both the input and output signal. By adding a
noise n(t) to the unknown clean part of the signal u(t), such that x(t) = u(t) + n(t).
Similarly, the response signal y(t) is also subjected to the measurement noise m(t), such
as, y(t) = v(t) + m(t), where v(t) is the unknown clean output signal. Then, the general
expression of the coherence function γ2(ω) is defined as follows:

γ2(ω) =
|Syx(ω)|2

Syy(ω)Sxx(ω)
=

1(
1 + Smm(ω)

Svv(ω)

)(
1 + Snn(ω)

Svv(ω)

) . (3.26)

The coherence is always positive, with γ2(ω) = 1 when Smm(ω) = 0, or Snn(ω) = 0.
Consequently, the coherence function detects the noise in both the input and output of the
system. In addition, γ2(ω) < 1 in the case of the nonlinearity of the system [74].

3.5.3 Time-Frequency Domain

The FFT are powerful tools for identifying the frequency contents of signals. However,
they are valid and effective in the case of stationary signals. In the case of signals where the
frequency content changes over time (non-stationary signals), more advanced methods (such
as Short-Time Fourier Transform (STFT) and the Wavelet Transform (WT)) can be used.
The basic idea behind this solution is to consider the signal as stationary over a finite time
duration T by using a localized time window w. The time-frequency map, or spectrogram,
is built using the STFT as follows:

X(τ, ω) =

∫ ∞
−∞

w(t− τ)e−iωtx(t)dt . (3.27)

One example of the used windows is the Gaussian window w(t − τ) = exp[−1/2( t−τσ )2].
The finite time duration T needs to be chosen carefully, as using a small T leads to learning
deeper about the signal with lower frequency resolution within the window. Conversely,
using a big T improves the resolution of the frequency content although not all of the
features of the signal will be identified. Another drawback of the STFT is that the original
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signal cannot be easily reconstructed from the spectrogram. The WT, which is not a part
of this study, can be efficiently used to overcome the problems of the STFT [141].
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Chapter 4

Methodology

4.1 Parameter Identification

4.1.1 Introduction

Verifying the actual behavior of existing structures requires knowledge of the actual param-
eters of the given system, for example, the material properties and the boundary conditions.
The characteristic parameters of the structure provided by the manufacturer in the datasheet
are usually used for the structural design. However, this information is not sufficient for
evaluating existing structures. This data deviates from the actual values to assure the qual-
ity of the constructed system, for example, using the CI to describe the data. To solve this
crucial issue, engineers usually conduct destructive and non-destructive experiments on the
given structure, which do not explicitly give the required parameters in most cases. For
these reasons, parameter estimation as a statistical term, or PI as an engineering term, is
currently one of the essential tasks of engineering and science, especially as the increasing
capacity of computers makes the tasks more practical and efficient.

In this section, inverse problem techniques are implemented to identify unknown param-
eters and quantify their uncertainties by utilizing measurements of the conducted experi-
mental models. One of the main challenges of the PI process is solving the ill-posedness of
the inverse problem using regularization techniques, such as Tikhonov regularization in the
deterministic approach. As mentioned in Section 2.5, Bayesian inference is a probabilistic
approach of the UQ framework that has an added value of quantifying the uncertainty of
the identified parameters without additive efforts. This prioritizes Bayesian inference as the
focal approach for inferring the unknown parameters and their uncertainties in this study.
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4.1.2 Problem and Formation

An approach that quantitatively and qualitatively infers unknown parameters is newly pro-
posed in this study. The approach focuses on increasing the number of inferred parameters
as is possible by utilizing the most relevant experimental measurements. On the other hand,
it proposes an enhanced combination of measurements, based on their characteristics, to im-
prove the quality of inferred parameters. As shown in Fig. 4.1, the approach is applied using
multiple measurements, the corresponding numerical models, and the PI process described
in Section 4.1.4.

System

Experimental
Model

Inferred Parameters

1

K
· · ·

Section 5.3

Numerical
Model

1

K
· · ·

Section 5.5

1

K
...

Set of
Measurements

1

K
· · ·

Surrogate
Model

PI Process

Section 4.1.4

Section 7.2

Fig. 4.1. The proposed approach of PI.

4.1.3 Updated Forward Model

Parameters of engineering models have mainly physical meanings, that is, they represent
material properties, geometry, boundary conditions and so on. Other parameters have
no physical interpretation, but they are needed to build the computational and numerical
models. Based on the nature of their uncertainties, parameters can be associated with well-
known uncertainty, unknown uncertainty, or even considered as deterministic parameters.

In this study, three types of parameters are considered, as follows: input parameters that
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are subjected to uncertainty x ∈ X , non-physical input parameters ξ ∈ Z, and well-known
deterministic input parameters, d ∈ D. In addition, hyperparameters θ ∈ Θ are sometimes
needed to describe the unknown uncertainty of uncertain parameters. By this, the forward
model M in Eq. (2.1) is reconstituted by classifying the input parameters based on their
nature and uncertainties, as follows:

M : X × Z ×D → Ỹ
(x, ξ,d) 7→ ỹ = G(x, ξ,d) .

(4.1)

In the UQ probabilistic framework (see Section 2.8.2), uncertain input parameters x
are considered as random variables X = (X1, · · · , Xm)T ∈ Rm with a prior PDF π(x;θX).
Here, θX represents the unknown hyperparameters that describe the variety of parameters
x. These hyperparameters are random variables ΘX with prior density distributions ΘX ∼
πΘX

(θX). In most cases, input parameters are conditionally independent, then the prior
of the unknown parameters is evaluated from π(x|θX) =

∏m
i=1 π(xi|θX). Consequently, the

joint prior distribution is written as

π0(x,θX) =

(
m∏
i=1

π(xi|θX)

)
· πΘX

(θX) . (4.2)

Random variables of the observations Ỹ = {Ỹ1, · · · , Ỹn}T ∈ Rn represent the multiple
outputs of the given case study. Their realizations ỹ = {ỹ1, · · · , ỹn}T are observed directly
from measurements of the conducted experiments, (or evaluated based on them). Now, the
stochastic forward model in Eq. (2.17) is updated such that

Ỹ = G(X,ΘX , ξ,d) + E . (4.3)

In this case study, the realizations η = {η1, · · · , ηn}T of the total errors E are not well-
known, because they are not quantified through experiments. This increases the number of
unknown parameters and includes additional hyperparameters θE with a prior distribution
πΘE

(θE). θE is needed to define the density distribution of the error E ∼ πE(η;θE).
Assuming that θE is mutually independent of x and θX , the joint prior distribution in
Eq. (2.17) can be updated as follows:

π0(x,θX ,θE) =

(
m∏
i=1

π(xi|θX)

)
· πΘX

(θX) · πΘE
(θE) . (4.4)

As mentioned previously in Section 2.7, errors E have a likely multivariate Gaussian
distribution E ∼ N (0,Σ) with zero-means E(η) = 0. Σ represents the symmetric and
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positive-semidefinite covariance matrix that is unknown (at least in this case), and is es-
timated through the applied framework. For uncorrelated errors, the covariance matrix is
rephrased to be Σ = σ2

E diag{ỹ1, · · · , ỹn}2 ∈ Rn×n, where σ2
E is the variance of the errors

η = ỹ − G(x, ξ,d). In this case, it is more convenient to use matrix notation in presenting
the Gaussian multivariate likelihood, as follows:

L(x, ξ,d|ỹ,θE) =
1

(2π)
n
2
√
|Σ|
· e− 1

2
ηTΣ−1η . (4.5)

It is common to consider the observations Ỹ and hyperparameters of the inputs ΘX as
mutually independent, that is, π(ỹ|x,θX) = π(ỹ|x). Accordingly, the posterior in Eq. (2.19)
is described as follows:

π(x,θX ,θE|ỹ) =
π(ỹ|x) · π0(x,θX ,θE)

π(ỹ)
. (4.6)

Considering the definition of the likelihood in Section 2.8.2, the likelihood π(ỹ|x) in Eq. (4.6)
can be written as (Ỹ |x, ξ,d) ∼ πE

(
ỹ − G(x, ξ,d); Σ

)
. For mutually independent observa-

tions Ỹ , the likelihood is calculated as

π(ỹ|x) ≡ L(x, ξ,d|ỹ,θE) =

n∏
i=1

πE

(
ỹi − Gi(x, ξ,d); Σi

)
, (4.7)

with Σi being the ith component of the main diagonal of the matrix Σ; by this, the normal-
ization constant z can be updated as follows:

z = π(ỹ) =

∫
X

∫
Z

∫
ΘX

∫
ΘE

L(x, ξ,d|ỹ,θE) π0(x,θX ,θE) dx dξ dθX dθE . (4.8)

At this point, unknown parameters can be inferred by sampling from the posterior π(x,θX ,θE|ỹ)

using the TMCMC algorithm.

4.1.4 Parameter Identification Methodology

The primary goal of the proposed approach is to infer unknown parameters quantitatively
and qualitatively. In this sense, the available observations of the conducted experiments
are utilized and managed in two strategies, as shown in Fig. 4.2. After implementing the
proposed strategies, the quality of the results is compared. Then, the results with the best
quality from one of the applied strategies is selected [142].
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Fig. 4.2. The proposed process of PI.

4.1.4.1 Strategy 1 (S1)

In this All-in-one strategy (S1) [142], the observations of different experiments, or even the
observations of different sensors in the same experiment, are formed in one observations
vector Ỹ = {Ỹ 1, · · · , Ỹ K}T that has the corresponding models M = {M1, · · · ,MK}T .
Term K represents the number of conducted experiments, where the observations of the
kth experiment are Ỹ k = {Ỹ k

1 , · · · , Ỹ k
nk}T . The realizations of these random variables are

ỹk = {ỹk1 , · · · , ỹknk}T ∈ Rnk .
The global likelihood becomes (Ỹ 1, · · · , Ỹ K |x, ξ,d) ∼ πE

(
ỹ−G(x, ξ,d);Σ

)
, whereΣ =

diag{Σ1, · · · ,ΣK} ∈ RN×N is the global covariance matrix and N =
∑K

k=1 n
k. Assuming

that data in each experiment are conditionally independent given the unknowns, we can
update the likelihood in Eq. (4.9) as follows:

L(x, ξ,d|ỹ1, · · · , ỹK ,θE) =

K∏
k=1

Lk(x, ξ,d|ỹk,θk
E) , (4.9)

where Lk(x, ξ,d|ỹk,θk
E) =

∏nk

i=1 πE

(
ỹki −Gk

i (x, ξ,d); Σ
k
i

)
is the likelihood of the observations

of the kth experiment.
The posterior is written as π(x,θX ,θE|ỹ1, · · · , ỹK) ∝ π(ỹ1, · · · , ỹK |x) · π0(x,θX ,θE).
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It can be evaluated as normal using (for example) the TMCMC algorithm or any other
appropriate method.

4.1.4.2 Strategy 2 (S2)

In the stochastic UQ framework that is utilized in the PI process, the concept of sensitivity
plays a key role in finding the unknowns. The more the given model is sensitive to the
unknown parameter, the lower is the uncertainty of this inferred parameter. In this sense,
an adapted sequential Bayesian approach is newly built in this study, named the sensitivity-
based strategy (S2), to achieve the goal of increasing the quality of the identified parameters
[142].

The observations Ỹ are classified into K subsets, based on the sensitivity of the un-
known parameters, that is, Ỹ = {Ỹ 1, · · · , Ỹ K}T of the forward modelM of the considered
system. The realizations of the observations are ỹ = {ỹ1, · · · , ỹK}T . Then, the Bayesian
updating framework is sequentially applied in a step-wise manner associated with the ob-
tained subsets, by assuming the mutual independence of the observation subsets, in other
words, π(ỹ1, · · · , ỹK) =

∏K
k=1 π(ỹk).

In the first step at k = 1, the joint prior π0(x,θX ,θE) and the first set of observations
ỹ1 are utilized to build the posterior, as follows:

π1(x,θX ,θE|ỹ1) =
L1(x, ξ,d|ỹ1) · π0(x,θX ,θE)

π(ỹ1)
. (4.10)

In the following steps, the posterior of the previous step π(x,θX ,θE|ỹ1) and the corre-
sponding set of observations ỹk are used, until the end of the observations subsets is reached,
that is, k = 2, · · · ,K. The posterior of the step kth could then be generalized to

πk(x,θX ,θE|ỹ1, · · · , ỹk) =
Lk(x, ξ,d|ỹk) · πk−1(x,θX ,θE|ỹk−1)

π(ỹk)
. (4.11)

In each step, the parameters are inferred by implementing the MCMC method, namely
the, TMCMC algorithm. However, this increases the computational time of the whole
process, because the parameters are inferred at each sub-step. At the same time, it is
still reasonable and has significant advantages in improving the convergence of the MCMC
algorithm and enhancing the quality of the identified parameters.
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4.2 Status Monitoring of Structures

4.2.1 Introduction

Amonitoring approach is built in the current Chapter 4 to detect changes in a given structure
using the data from an SHM system. The newly proposed approach covers the status
monitoring of cantilever structures, and will be implemented on the catenary poles (see
Chapter 8). The approach solves the Level 1 of DD through utilizing logistic functions for
detecting the outliers of the structure data, which avoids the expensive learning step in the
existing approaches of DD. Then, the Levels 2 and 3 of DD are handled using the concept
of data fusion of multiple dynamic properties and multiple modes of the structure.

The flowchart in Fig. 4.3 presents a vibration-based status monitoring approach that
uses outputs of the SHM systems in tracing the status of the structure of interest. The
approach compares the newly obtained natural frequencies and mode shapes of the given
structure with healthy data using the Status Monitoring (SM) algorithm described in Sec-
tion 4.2.2. When no damage is detected, the healthy data is updated, and to be used later
for subsequent checks. The damage identification algorithms described in Section 4.2.3 are
activated when the SM algorithm classifies changes in the given system as damage. As a
result, the damage is localized and quantified. This is then followed by a further decision-
making process (which is not a part of this study).

4.2.2 Status Monitoring Algorithm

The proposed SM algorithm uses the concept of control charts to classify the status of the
structure of interest, based on its healthy data. The healthy data of the structure defines
the reference status. New features of the given structure λd are calculated using newly
data recorded by an SHM system, namely, the natural frequencies f , the changes of natural
frequencies ∆f , and MAC values. Then, the new features are compared with healthy data.
The control chart in Fig. 4.4 (left) describes the proposed approach for a considered feature
λd. The new value of feature λ̂d is classified as damage when it is located outside pre-
defined alarm limitation for healthy data, or a so-called red region. The area within the
Alarm Control Limit (ACL) is divided into two regions. First, the orange region represents
the warning area when the feature of the structure approaches the alarm area. Second, the
green region represents when λ̂d is still close to the mean values µλ of the health data of a
feature λ, and below the Warning Control Limit (WCL).

The ACL is defined as a factor β of the standard deviation σλ of the considered feature
λ, such that ACL = β · σλ. The no-damage case is defined to satisfy ∆norm ≤ 1. The
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Fig. 4.3. Status Monitoring Approach.

normalized residual ∆norm is defined, as follows:

∆norm =
|µλ − λ̂d|
β · σλ

. (4.12)

Apart from the classical use of control charts [102], the proposed Status Monitoring
algorithm uses a logistic function (a Sigmoid function) to classify the status of the structure
of interest within pre-specified regions (namely, safe, warning, and alarm). Besides the
classification of features, the Sigmoid function associates studied features with probability
values, which later makes the decision-making process more practicable [143]. The Sigmoid
function S(z) is defined, such that

S(z) =
1

1 + e−z
, (4.13)
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Fig. 4.4. Pre-specified classification regions for β = 2: using control chart concept (left), using Sigmoid
function (right).

where the Sigmoid variable z is defined, such that z = ∆norm − 1.
An illustration of the Sigmoid function is shown in Fig. 4.4 (right) for β = 2, where the

values of z = {−0.5, 0, 0.5} correspond to control limit values of {σλ, 2σλ, 3σλ}.
Test data is compared to a reference status using a sliding window with a length wlen,

and a window shift wsh. The window length wlen decreases with the increase in speed by
which data is changed. The window shift wsh controls the smoothness of the results.

Based on the values calculated using Eq. (4.13), the Damage Index (DI) is defined as
the change of Sigmoid indices S̃, as follows:

DIi =
S̃d
i − S̃u

i

S̃u
i

, (4.14)

where DIi is the damage index of the ith mode. S̃d
i and S̃u

i represent Sigmoid indices of
the damaged and un-damaged structure, respectively. Sigmoid index S̃ =

∑P
p=1(S

p
nr · Sp

v )

evaluates the number Snr and values Sv of the outliers P that overpass a threshold calculated
using the reference status.

4.2.3 Damage Identification Algorithms

Once the SM algorithm classifies the structure status as damaged, a damage identification
algorithm is required to identify and quantify the structural damage. It is important to build
an algorithm that identifies the damage along the structure efficiently using the available
data from SHM. Accordingly, two vibration-based algorithms are proposed. The first is
the Frequency-based Damage Identification (FDI) algorithm [144] that detects the location
and severity of the damage. The second is a Curvature-based Damage Identification (CDI)
algorithm that is integrated into the first algorithm to provide the damage location a priori,
which improves the quality of outcomes of FDI algorithm [144].

51



4. METHODOLOGY

4.2.3.1 Curvature-based Damage Identification Algorithm

The CDI algorithm [144] uses relative changes of modal curvatures ∆ν to localize damage
along the given structure by applying Bayesian inference techniques as discussed in Sec-
tion 2.8.2. Realizations ỹ of observations Ỹ are considered such that ỹ ≡ {ν1, · · · , νi, · · · , νn}T ,
where νi is the modal curvature of the mode φi, and n is the number of considered mode
shapes. Unknown parameters vector x is formed from the coordinates ϑ of the attached
sensors m along the structure, such as, x ≡ {ϑ1, · · · , ϑj , · · · , ϑm}T .

For mutually independent observations Ỹ , the likelihood Lj at location ϑj is suggested
by [125], such that

Lj(ϑj |ν) =
n∏
i=1

π(νi|ϑj) , (4.15)

where the probability function π(νi|ϑj) is defined, as follows:

π(νi|ϑj) =
∆νij∑n
i=1 ∆νij

. (4.16)

The absolute relative changes in the modal curvature ∆νij are defied, such that ∆νij =

|νdij−νuij |/νuij , where νuij and νdij denote un-damaged (νu) and damaged (νd) modal curvature
of the mode φi at coordinate ϑj along the structure.

The prior π0(x) ≡ π0(ϑ) =
∏m
j=1 π0(ϑj) is selected to decrease the probability gradually

with an increase in the coordinate of the sensor ϑj . The selected prior fulfills the high
probability of expected damage at the lower part of the cantilever structure; that is, at the
points of high stress under applied actions.

Consequently, the probability of damage at ϑj given the modal curvatures ν is written
as [125, 145]

π(ϑj |ν) =
Lj(ϑj |ν) · π0(ϑ)∑m

j=1

(
Lj(ϑj |ν) · π0(ϑ)

) . (4.17)

The validation and implementation of the CDI algorithm are discussed in Section 8.4.1.

4.2.3.2 Frequency-based Damage Identification Algorithm

As mentioned in Section 3.3.1, using the natural frequencies for DD has recently regained the
interest of some researchers, especially when using Bayesian data fusion of multiple natural
frequencies that detects damage to Level 1 of DD. A newly proposed FDI algorithm extends
solving the DD problem in Levels 2 and 3 using a UQ framework [144]. The FDI algorithm
is a vibration-based Bayesian algorithm that fuses informative data of multiple natural
frequencies to quantify and localize the damage along the given structure (For example, see
Fig. 8.2).
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The Bayesian approach illustrated in Section 4.1.3 is re-used to infer the unknown pa-
rameters of DD. Using the changes of the natural frequencies ∆f as a damage feature,
the realizations ỹ of observations Ỹ are build , as follows, ỹ ≡ {∆f1, · · · ,∆fi, · · · ,∆fn}T ,
where ∆fi is the relative changes in the natural frequency of the ith mode, and n is the
number of considered modes. The characteristics of the damage, that is, damage location
ϑ and damage severity α, are considered as unknown parameters x, such as, x ≡ {ϑ, α}T .
Consequently, the posterior in Eq. (4.6) is written as follows:

π(ϑ, α|∆f) =
L(ϑ, α|∆f) · π0(ϑ, α)

π(∆f)
. (4.18)

The prior of the damage location π0(ϑ) can be derived using the curvature algorithm CDI, as
mentioned in Section 4.2.3.1. Accordingly, unknown parameters can be inferred by sampling
from the posterior π(ϑ, α|∆f) using, for example, the TMCMC algorithm. An implementa-
tion of the current algorithm can be found in Section 8.4.3.

4.3 Summary

The Bayesian probabilistic approach is proposed to identify the unknown parameters of the
given structure. First, the empirical Bayesian approach is adopted through the All-in-one
strategy (S1) by utilizing FEM models and observations of the multiple experiments.

An adapted sequential Bayesian approach is proposed to improve the quality of inferred
parameters. This approach is implemented through the sensitivity-based strategy (S2) by
dividing the observations into subsets based on the sensitivity of the parameters. Then,
the Bayesian approach is applied in a sequential manner, considering the posterior of the
current step as the prior to the subsequent step. In both strategies, the TMCMC algorithm
can be used to sample from the posterior.

In addition, a vibration-based status monitoring approach that traces the status of the
structure of interest over time is presented. This approach consists of three algorithms:
the SM algorithm, the CDI algorithm, and the FDI algorithm. The proposed monitoring
algorithm uses a logistic function for classifying the status of the structure of interest as
either damaged, or un-damaged status.
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Chapter 5

Case of Study

5.1 Prestressed Concrete Poles

5.1.1 Introduction

Poles are used worldwide to support power transmission, telephone and telegraph lines,
street lighting, antenna masts, and overhead power lines for electric trains. For many years,
poles were made of wood, steel, and concrete. In the early years of the 20th century, concrete
poles were made of normal reinforced concrete. The main hazard with this type of pole is
the corrosion of reinforcement bars due to environmental and exposure conditions [12].

Two improvements in the production of concrete poles increase their use. The first im-
provement was achieved by Eugene Freyssinet, who developed the concept of prestressed
concrete. He produced the first prestressed concrete pole in the mid 1930s. The second
improvement was the development of the centrifugal or spun-cast method in 1968, which
facilitated the production of the hollow cross section, prestressed concrete pole [146]. Nowa-
days, the production process has developed further, by using high and ultrahigh strength
concrete and a better curing process. These improve the durability of the poles, making
them lighter and stronger, able to withstand more cyclic loads, and increasing their re-
sistance to environmental conditions [147, 148]. Compared to steel poles, the prestressed,
spun-cast concrete poles become more feasible, cheaper; have a longer operational life, and
lower lifetime costs [13].

Due to their height and slenderness, prestressed concrete poles are considered to be
cantilevered structures. Their capacity is generally governed by their flexural capacity,
whereas shear and torsion capacity play a minor role [149, 150, 14]. It is recommended by
different design standards that poles are designed to withstand equal bending moments in
opposite directions by applying a uniform prestressing, and adapting the prestressing forces
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Fig. 5.1. Illustration of the catenary pole system: Schematic illustration (left) [2], and the actual system
in Germany (right) [3].

to ensure they remain uncracked under service working conditions [151, 152].
However, spun-cast, prestressed hollow concrete poles are robust structures. Through

their history, few cases of failure for the power transmission and lighting poles have been
reported in the literature. This includes flexural failure in windstorms [153], and the shear
failure under collision [154]. One further registered failure type of spun-cast poles is that of
longitudinal cracks, caused by differential shrinkage between the fine layer along the inside
of the pole and the coarser layer on the outside [155]. These phenomena are discussed by
some literature, for example, [16, 156]. Moreover, the dynamic behavior of this type of pole
is also verified in many research studies [157, 158, 159].

5.1.2 Catenary Poles

Structural members, called catenary poles, suspend the catenary systems of electric trains.
These structural members are installed at equal-spaced distances along the train-track to
support the overhead power lines for electric trains. They play a vital role in the entire train
system, as any damage to one of these members leads to difficulties in the functionality of
the whole system; therefore questions about their performance and material properties are
essential. Fig. 5.1 illustrates the different parts of the catenary pole system used in Germany.

This type of pole is mainly subjected to a combination of several actions that include
(but is not limited to) static actions, seasonal ambient temperature, and wind effects. Fur-
thermore, trains passing near the poles causes a transient excitation, which forces the poles
to vibrate frequently in a complex form. There are three main sources of such transient
vibrations. First, vibrations are transmitted from the waving of the catenary cables due
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to the interaction between them and the pantograph of the train. second, vibrations are
caused by the air pressure wave generated by the train. Third, vibrations travel through
the foundation caused by the interaction between the train wheels and the sub-base of the
track.

Each of these transient excitation sources have been separately well-studied by many
researchers. In the case of train-induced ground vibrations, some research focuses on the
nature of the wave that is transmitted through the soil, and how this can be used to detect
the train speed [160, 161]. However, the railways and their interaction with the surrounding
soil and nearby structures, still offer a very promising research domain, for example, [162].
Other researches study the effect of train-induced vibrations on adjacent buildings, but not
the poles that carry the catenary system. In addition, due to the collapse of some of the
noise protection walls, Ampunant et al. investigates the effect of aerodynamic pressure loads
on such structures when high-speed trains are passing by [163].

The interaction of the train’s pantograph and the catenary cables are investigated for
various types of pantographs, and different train types and speeds. Some of these studies
replace the pole by fixed boundary condition in the numerical model, where others assume
some stiffness by using elastic springs to simulate the connection [2, 164]. This is valid
to study the behavior of the catenary as an isolated system without taking the actual
interaction between it and the poles. Pombo et al. provide a detailed model of the catenary
system that includes the poles themselves. However, they study changes in the behavior of
the catenary cables without addressing the effects on the poles [165].

As already mentioned, most research (and literature) focuses on power transmission and
lighting. Some intensively study the catenary system and the train-induced vibration in
the soil. However, scant attention has been paid to the behavior of the catenary poles in
the literature. Currently, catenary poles have not received adequate attention, given their
importance to the entire train system.

This means that further research is needed to detect the actual behavior of these poles
and their interaction with the catenary system and surrounding soil. This gives the mo-
tivation to focus our study on the dynamic behavior of this type of pole, particularly the
prestressed, spun-cast catenary poles made from high-strength concrete. Recently, thou-
sands of these catenary poles have been installed along the new high-speed train track in
Germany.

The properties of the prestressed, concrete poles change visibly over time due to different
effects, such as, the degradation of concrete because of shrinkage, creep, and low-cycle
fatigue; and the increase in prestressing losses. This increases the necessity to trace the
performance of the poles under various actions (namely, static, environmental, and dynamic
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actions), considering the long-term changes in the material of the pole.

5.2 Case Study

5.2.1 Introduction

In collaboration with Deutsche Bahn (DB), Europoles GmbH & Co. KG developed a system
of standard catenary poles for german high-speed rail routes, reaching a speed of 330 km h−1.
This system fulfills the particular requirements of this type of pole. It considers the minimum
maintenance cost, high corrosion resistance, and easy installation. Besides, the poles were
designed to have relatively high rigidity; thus the poles exhibit minimal structural and
dynamic deformations. This minimizes the oscillation of the catenary pole during and after
the passing of the train [3].

The catenary poles were selected as one of the reference projects within the Deutsche
Forschungsgemeinschaft (DFG) Research Training Group 1462 (GRK1462) at Bauhaus Uni-
versität Weimar. To fulfill the aim of this project, the members of GRK1462 selected the
newly-built, high-speed train track between Erfurt and Halle/Leipzig, which provides a
unique opportunity to analyze a newly-built structure at different stages: production, instal-
lation, and service life. To achieve this, a short-term experimental program and long-term
monitoring system were developed to collect the statistical data of the real system.

The experimental program was implemented in the laboratory through a series of short-
term tests to verify the properties of the spun-cast poles. This included (but was not limited
to) the verification of geometry, compression tests of cut-pieces, vibration tests, and 3-point
bending test. More details about this program are available in [166, 167]. In Addition,
vibration tests of 16 poles were conducted on-site after the completion of the installation
process. At the time of the tests, only the electric return cables were connected to the poles,
where the full catenary system was not yet attached [168].

The installed SHM system diagnosed the current state of the structure between the
summers of 2015 and 2018. Based on the recorded data, GRK1462 verified different phe-
nomena: detect the train passing, the effects induced by the train passing, the effects caused
by environmental changes, and the development of concrete strains and prestressing strands
[169, 170].

The experimental program utilized in this study was implemented within the activities of
the GRK1462 group and with the contribution of its members, which is highly appreciated.
The author was involved mainly in different phases of the 3-point bending test and partially
in conducting the vibration test. This included the design of the experiment, implementa-
tion, and analysis of the results. For additional verification of the pole, the experimental
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Table 5.1: The nominal geometry of the poles.
Dimension Nominal value
Length, L [m] 10
Outer diameter at the bottom, dbot [mm] 400
Outer diameter at the top, dtop [mm] 250
Wall thickness at the bottom, tbot [mm] 62
Wall thickness at the top, ttop [mm] 52

program was extended after the close of the project in 2017. The extension covered the
vibration test of the damaged poles and the verification of the actual dimensions.

5.2.2 Geometry and Materials

The studied structure is 10 m in height with tapered hollow circular sections. The outer
diameter at the bottom end is 400 mm and reduces linearly to 250 mm at the top of the
pole. The pole is produced by a spinning method, resulting in a variation of the wall
thickness. The geometric of the spun-cast pole is summarized in Table 5.1. However,
verification of the geometry in the laboratory showed that, relative to the nominal ones,
a considerable increase of 15% in the wall thickness exists due to the spin casting process
during production. Nevertheless, the actual measured dimensions are used in this study to
ensure optimal estimation of the parameters and more realistic identification of the given
structure.

Nominal material properties of the structure, which are summarized in Table 5.2, were
extracted from the data sheet provided by the manufacturers. The pole is made of a high-
strength concrete with grade C80/95 . Furthermore, the cross-section incorporates ten
strands, prestressed initially with a total force of approximately 680 kN. The strands are
distributed equally throughout the perimeter. The strand layout is displayed in Fig. 5.2
(right). There is no additional longitudinal reinforcement, except two bars (Ø10 mm) used
for grounding. Spiral reinforcement, with a diameter of 5 mm and pitch of 50 mm, is added
along the pole.

Table 5.2: Nominal material properties.
Material Value
Concrete
Concrete grade C80/95
Prestressing
Prestressing strands 7/16" St 1680/1880
Number of strands, nst 10
Area of the strand, Ast [mm2] 70
Initial prestressing stress, σPT [MPa] 975
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Fig. 5.2. Arrangement of the strain gauges of the laboratory poles: the location of the strain gauges along
the pole (left), and the arrangement of the prestressing strands in the cross-section of the pole (right); the
strain gauges are attached to the strands A, B, C, and D. The cross-section seen from bottom of the pole
and matches the setup of the 3-point bending test.

5.3 Experimental Program

For the sake of the experimental program, the manufacturer provided the GRK1462 with
four poles. These poles have the same characteristics and production conditions as the pole
installed on site. To follow the development of the strains of the prestressing strands during
and after the production, eight strain gauges were attached to four prestressing strands
before casting the concrete in two positions: at the mid-height of the pole and at 1.2m from
the bottom of the pole, as shown in Fig. 5.2.

The experiments were conducted in cooperation with Versuchstechnische Einrichtung
(VTE), which is the laboratory of the Institute for Structural Engineering of the Faculty of
Civil Engineering at the Bauhaus-Universität Weimar. In the following, an overview of the
conducted experiments, which are employed in this study, are described. Three types of the
experiments were mainly selected: vibration test of the undamaged pole, 3-point bending
test, the vibration test of the damaged pole.

5.3.1 Vibration Test

A pole was tested in a vibration test in free-free setup by hanging it in a horizontal posi-
tion using two ropes as shown in Fig. 5.3. A set of twelve 1D accelerometers (type PCB
Piezotronics 393A03) were attached to the pole to measure the accelerations in the horizon-
tal and vertical directions, according to the test setup. Two of the sensors were fixed to the
top end of the pole, and considered as reference sensors while the rest were configured in
two measurement setups to increase the quantity and quality of the identified mode shapes
and natural frequencies.

Moreover, a hammer with an appropriate hardness of impact tip was used to excite the
structure in three positions in both horizontal and vertical directions. The procedure was
repeated for each sensor-setup. In the first sensor-setup, the sensors were attached with an
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Fig. 5.3. Vibration test layout (Source: VTE).
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Fig. 5.4. The vibration test of the un-damaged pole – schematic experimental setup.

in-between distance of 2.0 m; then these sensors were moved 1.0 m towards the bottom of
the pole to form the second measuring setup, as shown in Fig. 5.4.

Data was acquired at a sampling rate of 4096 Hz. The modal parameters were identified
using the recorded accelerations from the two setups. The data were analyzed using the
OMA, based on the output-only data. The covariance-driven version of the SSI method was
implemented to compute the covariances of the identified system and modal parameters
using the MACEC toolbox [171]. The modal parameters of the first five modes in both
horizontal and vertical directions were identified. The results of the SSI analysis are shown
in Figs. 5.5 and 5.6 for vertical and horizontal directions, respectively. The identified natural
frequencies f and the damping ratios ζ are listed in Table 5.3.

5.3.2 3-Point Bending Test

Later, the same pole was tested in a 3-point bending setup. The setup was selected to verify
the actual performance and to evaluate the actual material properties of the pole. This test
has been used widely in the literature and verified by mathematical models [172], which
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Fig. 5.5. The results of the SSI analysis of the un-damaged pole in the vertical direction: the singular
values of the output covariance matrix (left), and the stabilization diagram (right).
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Fig. 5.6. The results of the SSI analysis of the un-damaged pole in the horizontal direction: the singular
values of the output covariance matrix (left), and the stabilization diagram (right).

makes the results more understandable and offers more accurate interpretation. Further-
more, this setup also covers both linear and non-linear behavior of the concrete in tension
and compression.

For the sake of DoE, a preliminary analysis of the pole using Response2000 was performed
before conducting the test. This step was essential for building the most appropriate exper-
imental setups. Response2000 is an advanced fiber model of prestressed sectional analysis
with the effects of shear, and is based on the Modified Compression Field Theory (MCFT)
considering biaxial stress-strain behavior throughout the depth of the beam [173]. Nominal
material properties were used for the preliminary analysis, which gave the maximum con-
centrated load at mid-span of 67 kN, corresponding to a deflection of 102 mm at the failure
of the beam, as shown in Figs. 5.7 and 5.8.

Based on the results of preliminary analysis, the experimental setup and applied dis-
placements were developed. The pole was tested horizontally in a simply-supported setup.
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Table 5.3: The Natural frequencies f and the damping ratios ζ of the first five mode shapes of the
un-damaged pole.
Mode shape a 1 - v 2 - v 3 - v 4 - v 5 - v 1 - h 2 - h 3 - h 4 - h 5 - h
f [Hz] 15.56 42.67 81.72 131.69 192.43 15.56 42.17 81.09 131.58 192.68
ζ [%] 0.87 0.72 0.28 0.38 0.47 0.33 0.33 0.36 0.26 0.81
a (i− v) is the ith mode shape in vertical directions, and (i− h) is the ith mode shape in horizontal
directions, i = 1, · · · , 5.

 

-4.00 7.24 

top 
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Fig. 5.7. The preliminary analysis of the beam in 3-point bending test setup using Response2000: the
equivalent cross-section (left), and the cracked cross-section at failure point with the stress diagram in MPa
(right).

The supports were made to fit the circular shape of the pole, as shown in Fig. 5.9. The pole
was supported at 1.5 m from each of the ends, resulting in a mid-span of 7 m. The schematic
experiment setup is shown in detail in Fig. 5.10.

The pre-specified displacements –shown in Fig. 5.11 (left)– were applied vertically at
mid-span in steps by a servo-hydraulic piston, until the failure of the pole. Each step
consisted of three identical loops. Each loop was ended by totally removing the applied
displacement. The steps were carefully selected to cover the behavior of the structure in
both the un-cracked and the cracked phases. Accordingly, concrete strains in the linear and

 

Fig. 5.8. The preliminary analysis of the beam in 3-point bending test setup using Response2000: the half
of 7 m span with expected cracks at failure point (top), and the load-deflection curve (bottom).
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Fig. 5.9. 3-point bending test layout.
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Fig. 5.10. 3-point bending test – schematic experimental setup.

non-linear phases were measured. The corresponding loads were measured from the load
cell located at the piston and plotted in Fig. 5.11 (right).

Before conducting the test, the strains of the prestressing strands were recorded for
strands A to D shown in Fig. 5.2 (right). The recorded strains were in the range εPT =

[2.5− 3.6] ‰ with a mean value µPT = 3.08 ‰ and a standard deviation σPT = 0.41 ‰.

During the test, deflection of the pole was recorded continuously, using Inductive Dis-
placement Transducers (IDT) in three positions, P1, P2, and P3 as shown in Fig. 5.10. The
point P1 matches the point of maximum deflection, due to the self-weight of the pole in the
experimental setup. Points P2 and P3 correspond to the quarters of the mid-span. Deflec-
tions were only measured due to the applied displacements. Due to technical difficulties,
the deflection under the self-weight of the structure was not measured at the beginning of
the bending test.

In addition, strains on the outer surface of the concrete were measured using four strain
gauges at position P1. Two strain gauges were attached one at each of the top and bottom
of the pole in the experimental setup. The other two strain gauges were attached at the
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Fig. 5.11. The applied loading regime of the 3-point bending test: the applied displacements at the
mid-span (left), and the corresponding piston loads (right).
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Fig. 5.12. The results of the 3-point bending test: load-displacement hysteresis curve presented at the
points P1 (left), P2 (middle), and P3 (right).

mid-height of the cross-section from both sides.
As shown in Fig. 5.12, the maximum load was 81 kN corresponding to deflection of

110mm, 63mm, 71mm at the points P1, P2, and P3, respectively. Development of strains
of the prestressing strands is shown in Figs. 5.13 and 5.14 (right). The maximum strain
reached 9.5 ‰ at the lower strands (A and B) and 4.6 ‰ at the upper strands (C and D).
The sign convention for strain is as follows: tensile strain is positive whereas compressive
strain is negative.

From Fig. 5.13 (right) and Fig. 5.14 (right), it is evident that the tensile strains of
prestressing strands C and D decreased in the first part of the test, because they were
located within the compression zone of the cross-section. This trend reversed, starting from
the displacement corresponding to the load of 38 kN when the crack depth reached the level
of these strands.

At failure, the strain in the most upper fiber of the cross-section at the point mid-span
reached −3.0 ‰, which caused the concrete to fail under compression, as shown in Fig. 5.14
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Fig. 5.13. The results of the 3-point bending test: the strains of the prestressing strands during the test
measured at strand A (left), strand B (middle), and strand C (right).

-3 -2.5 -2 -1.5 -1 -0.5 0
0

10
20
30
40
50
60
70
80
90

0 0.1 0.2 0.3 0.4
0

10
20
30
40
50
60
70
80
90

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6
0

10
20
30
40
50
60
70
80
90

Fig. 5.14. The results of the 3-point bending test: the concrete strains at the top fiber at position P1
(left), the concrete strains at the bottom fiber at the position P1 (middle), and the strains of the prestressing
strand D (right).

(left). The development of concrete tensile strains shown in Fig. 5.14 (middle) indicates that
the section cracked seriously at strain 0.4 ‰ corresponding to a load of 35 kN. However,
the results of this strain gauge after this point are not reliable, as it was partially damaged
due to the cracks in the concrete.

It was evident that the measured loads and deflections were more than those calculated
from the preliminary analysis by approximately 20%. These increments are ascribed to the
differences between the ’real ’ properties of the structure and the nominal values mentioned
in the datasheet. These differences indicate the importance of identifying the real geometry
and material properties before evaluating the actual behavior of the structure.

For greater understanding and in-depth verification of the nature of the structure and
the ongoing test, a deflection-wise sensitivity analysis is accomplished. This analysis is
fundamental to this study as it shows the most dominant parameters at each step of the
test. In this analysis, the envelope of the load-deflection hysteresis curve is discretized
before implementing a sensitivity analysis. As a result, Sobol sensitivity indices, based on
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Fig. 5.15. Stacked sensitivity indices at the point P1: first-order sensitivity indices (left), and total effects
sensitivity indices (right).
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Fig. 5.16. Stacked sensitivity indices at the point P2: first-order sensitivity indices (left), and total effects
sensitivity indices (right).

the variance method at each discretization point, are calculated.
The results of the sensitivity analysis at P1, P2, and P3 are shown in Figs. 5.15 to 5.17,

respectively. As a conclusion, for the deflections measured at P1 (for example), the modulus
of elasticity Ec is dominant in the first part of the test up to a deflection of 6 mm. For the
deflection values between 6 and 80 mm, both the concrete tensile strength fctm and the
prestressing initial strain εPT are the leading parameters. For the remainder, until failure
point is reached, the compression strength of the concrete fcm and the concrete strain at
maximum compressive stress, εc become the most critical parameter.

The same interpretation covers the result of the point P3 in Fig. 5.17. The result at
point P2 (shown in Fig. 5.16) differs a little at the last part, starting form deflection of
60 mm. This result is logical, as the cross-section at point P2 is larger and has fewer cracks
in its vicinity compared to the smaller cross-sections at points P1 and P3.

Finally, the behavior of beams under the 3-point bending test has three main stages.
In the first stage, the relation between the applied load and the deflection changes linearly.
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Fig. 5.17. Stacked sensitivity indices at the point P3: first-order sensitivity indices (left), and total effects
sensitivity indices (right).

The slope of this curve is affected by the stiffness of beam, which makes this stage ideal
for detecting the concrete modulus of elasticity. This linear behavior starts to change as
the first crack occurs at the lower fiber of concrete, which makes this stage suitable for
identifying the tensile strength of the concrete. In the second stage, the concrete cracks
continue propagating, which leads to a nonlinear relation between the load and deflection.
In the final stage, the load-deflection curve turns into a linear relation again, but with a
much smaller slope, where a small increase in forces occurs against a dramatic increase in
deflection.

5.3.3 Vibration Test of the Damaged Pole

During the 3-point bending test, it was recognized that most of the small cracks were
recovered when the applied displacement returned to zero. Except for the main crack at the
mid-span, which was clearly evident, it was found that most of the main cracks were closed
again after the pole had been left for a period after completion of the test. The highly applied
prestressing forces, and the elastic behavior of the prestressing strands worked efficiently to

Fig. 5.18. The paths of the cracks (orange lines) at the failure of the pole under the 3-point bending test.
The numbers on the photos represent the location of the cracks measured in meters from the top of the
pole.
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Fig. 5.19. The general arrangement of the vibration test of the damaged pole.

keep the cracks closed, which meets the requirement of the corrosion protection, mentioned
previously in Section 5.1.1.

The paths of the cracks along the damaged pole are shown in close-up in Fig. 5.18. The
main cracks are located at the second and third quarters of the tested span in the 3-point
bending test, that is, between points P2 and P3, as shown in Fig. 5.10. The crack patterns
are repeated in equal distances, mainly between 250 and 300 mm.

It is expected that the on-site poles follows the same behavior in case of cracking, which
might affect the process of tracking the dynamic behavior of the poles considerably. This
phenomenon gives the motivation to verify the impact of the ’recovered cracks’ on the modal
parameters of the severely damaged pole. For this reason, the same vibration test on the
damaged pole as had been previously conducted on the un-damaged pole was re-produced.
The arrangements and detailed setup of the test are shown in Figs. 5.19 and 5.20.

The main goal is to compare the results of both damaged and un-damaged poles to
present the changes in system identification and to propagate a damage detection indicator
of the given structure. Accordingly, the observations of the test are analyzed using sig-
nal processing and SSI methods, which verifies the efficiency of each method in detecting
changes in the dynamic behavior of the pole. The derived natural frequencies in vertical and
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Fig. 5.20. The setup of the vibration test of the damaged pole.
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Table 5.4: The natural frequencies f in [Hz] of the first five mode shapes of the damaged pole.
Mode shape a

Method 1 - v 2 - v 3 - v 4 - v 5 - v 1 - h 2 - h 3 - h 4 - h 5 - h
PSD b 14.40 43.20 78.60 130.50 186.20 15.40 42.00 80.60 131.60 191.10
SSI 14.42 43.01 78.36 130.75 186.43 15.44 42.13 80.64 131.26 191.31

Diff. c [%] 7.33 0.80 4.10 0.71 3.12 0.77 0.10 0.55 0.21 0.71
a (i− v) is the ith mode shape in vertical directions, and (i−h) is the ith mode shape in horizontal
directions, i = 1, · · · , 5.

b The average values of the different applied test setups and hammering positions.
c The difference is calculated in comparison to the measured values of the natural frequencies listed
in Table 5.3.

Table 5.5: The damping ratios ζ of the first five mode shapes of the damaged pole.
Mode shape a 1 - v 2 - v 3 - v 4 - v 5 - v 1 - h 2 - h 3 - h 4 - h 5 - h

ζ [%] 0.47 0.40 0.31 0.29 0.38 0.47 0.35 0.32 0.34 0.48
a (i − v) is the ith mode shape in vertical directions, and (i − h) is the ith mode shape in
horizontal directions, i = 1, · · · , 5.

horizontal directions are listed in Table 5.4. The damping ratios ζ are listed in Table 5.5.
In Figs. 5.21 and 5.22, two examples of using the signal processing methods by utilizing

the vertical accelerations, which were recorded by sensors v-2 and v-4. The signals of the
hammering positions H1, H2, and H3 for each sensor were appended. Then, different signal
processing techniques were implemented so that their benefits would help in detecting the
natural frequencies of the structure in the applied test setup.

The results of the FFT and PSD techniques are almost the same. The peaks of the cor-
responding diagrams in Figs. 5.21 and 5.22 represent the natural frequencies of the damaged
pole. However, the STFT technique has greater advantages as it additionally describes the
change of frequencies over time. Moreover, it shows the dominant frequencies during the
test and the suitable hammering positions for detecting the different natural frequencies.

As an example, the STFT results of sensor v-2 in Fig. 5.21 (right) show that the first and
second natural frequencies are efficiently detected by exciting the structure at the second
hammering position H2, whereas the third hammering position (H3) is optimal for detecting
the fifth natural frequency of the structure. Fig. 5.22 (right) shows that for sensor v-4, the
dominant natural frequencies detected by this sensor are the third and the fourth, especially
from the excitation at the first hammering position H1. The fifth natural frequency is hardly
detected using this sensor.

From Table 5.4, it is clear that the natural frequencies f (derived by the covariance-based
SSI method and signal processing analysis) are almost the same. By comparing these results
to the un-damaged case, it is evident that the main changes occurred in the odd-number
natural frequencies, especially in the vertical direction. The maximum change corresponds
to the first natural frequency and decreases for the third and the fifth.
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Fig. 5.21. The analysis of the signals of the sensor v-2 in the vertical direction using signal processing
methods: FFT analysis (left-top), PSD analysis (left-bottom), and STFT analysis (right).

The same trend is evident in Figs. 5.23 and 5.24 for the results of the SSI analysis for
the vertical and horizontal directions, according to the test setup. In contrast, the changes
in damping ratios ζ do not follow a clear trend as in the case of the natural frequencies f.

For a greater understanding of the dynamic behavior of the damaged pole, the mode
shapes of the damaged and un-damaged pole are compared, as shown in Fig. 5.25. It
is evident that the main changes of the mode shapes of the damaged pole occur at the
coordination of 5 m at the mid-span. This reflects the significant influence of the main
crack at this position.

In Fig. 5.26, the plot of the MAC analysis emphasizes that the even-number mode
shapes are less sensitive to the main crack, as they have a modal node at the crack location,
which indicates why significant changes of the natural frequencies are important for the odd-
number modes. Besides, it can be seen that the horizontal direction has fewer changes in
natural frequencies and mode shapes because the cracks are mainly in the vertical direction.
They significantly reduce the stiffness of the pole in the vertical direction, compared to the
horizontal direction.

Unequal changes to the different modes of the structure form a good indicator of the
damage situation of the pole and can be developed to cover damage localization, and to
some extent, damage severity. It is right that the tested pole is severely damaged, which
is not the expected case for the real poles on site. However, these findings are promising
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Fig. 5.22. The analysis of the signals of the sensor v-4 in the vertical direction using signal processing
methods: FFT analysis (left-top), PSD analysis (left-bottom), and STFT analysis (right).

to invest more in the direction of building a status detection approach that supports the
aim of this study in identifying the behavior and detection of the status of poles on-site, as
described in Chapter 8.

5.4 Long-term Structural Health Monitoring System

The SHM system was installed on three successive poles along the new high-speed train track
between Erfurt and Halle/Leipzig. This track is part of the project VDE 8.2, constructed
by Deutsche Bahn (DB). The location and the arrangement of the selected poles M262-
25, M262-27, and M262-29 are shown on the plan in Fig. 5.27. A general layout of the
train track at the selected location is depicted in Fig. 5.28. The system collected the data
from December 2015 to August 2018, mainly during the sunny weather(which is required to
charge the system batteries).

The on-site part of the SHM system consists of a control cabinet that has the data
acquisition unit, a local PC, batteries, solar panel, and temperature sensor. In this control
unit, the data was collected from the sensors and stored temporarily. Then, the data wad
collected frequently and stored permanently on a specific server in the university. The system
was automatically triggered through photoelectric sensors attached to the poles M262-25 and
M262-29. As a train-passed, the system began collecting data from the different sensors.
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Fig. 5.23. The results of the SSI analysis of the damaged pole in the vertical direction: the singular values
of the output covariance matrix (left), and the stabilization diagram (right).
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Fig. 5.24. The results of the SSI analysis of the damaged pole in the horizontal direction: the singular
values of the output covariance matrix (left), and the stabilization diagram (right).

The attached SHM is illustrated in Fig. 5.29. In the following, a summary of the most
important details of the SHM system is provided. However, full details can be found in
[174, 175, 169].

The primary goal behind this SHM system was to track the behavior of the pole under
train-induced effects and environmental conditions. Accordingly, different types of sensors
were attached to the selected poles M262-25, M265-27, and M262-29. The vibration of
the structure is detected mainly through two 2D accelerometers of type PCB Peizotronics
393A03. The accelerometers were attached at two levels to measure the change in horizontal
accelerations of pole M262-27 in directions parallel and perpendicular to the train track.

Furthermore, strain gauges were attached to measure changes of the strain over time for
each of the concrete outer surfaces, the prestressing strands, the foundation steel pipe, and
additional reinforcement bars embedded into the concrete. Changes in temperature were
measured by sensors attached to the concrete outer surface, and other sensors were embedded
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Fig. 5.25. The normalized mode shapes of the pole: the mode shapes of the damaged pole in vertical
direction (left), the mode shapes of the un-damaged pole in vertical direction (middle-left), the mode shapes
of the damaged pole in horizontal direction (middle-right), and the mode shapes of the un-damaged pole in
horizontal direction (right).

into the concrete. Wind speed and direction were measured using a 3D anemometer attached
to the top of pole M262-27. In addition, a 1D anemometer was also attached to the same pole
at 4 m from the top, and one soil pressure sensor was attached at a depth of approximately
1.2 m below ground level.

Signals from the different sensors were synchronously recorded in two digital files for
a period of eight minutes. The .TST file contained general information about the data
sampling rate, recording time and length, and the date. Data collected from the sensors
were stored in the form of a .BIN binary file. Signals from the temperature sensors were
acquired in 1 Hz sampling rate, whereas the signals of the other sensors were mainly sampled
in 1200 Hz. For a short period, the sampling rate is reduced to 600 Hz and then 300 Hz to
study the effect of different rates on the results of the signal processing. The binary files were
converted to .mat format using a pre-defined script. Then, the data was read, visualized,
and analyzed in MATLAB packages [176].

5.5 Numerical Modeling

A 3D fully-detailed FEM model is built to simulate each of the experimental tests and
poles on the site. The concrete material is simulated using volume elements with eight
nodes, each with three degrees of freedom. The sizes of volume elements are approximately
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Fig. 5.26. The MAC matrix between the modes of the damaged pole (horizontal axis) and the un-damaged
pole (vertical axis): the MAC values for the modes in the vertical direction (left), and the MAC values for
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Fig. 5.27. The location of the SHM system.

50 × 50 × 25mm in the longitudinal, circumferential, and radial directions, respectively.
The volume elements sizes are selected based on the mesh convergence analysis shown in
Fig. 5.30 to assure that the mesh size has no significant effect on the FEM results. Further,
the prestressing strands are simulated using 3D truss elements with two nodes and three
degrees of freedom at each node. The boundary conditions are selected in proportional to
the simulated case, for example, the boundary conditions of the conducted experiments and
the poles on-site.

The concrete constitutive model is carefully built to match the linear and nonlinear
behavior of the concrete. Concrete damage plasticity (CDP) constitutive model is used
in this study. The selected model covers both softening and hardening behavior of the
concrete in tension and compression, respectively. The selected model covers two main
failure mechanisms: tensile cracking, and compressive crushing [177]. Moreover, the selected
concrete constitutive model has the advantage of simulating the material in the post-cracking
phase, which is mainly required for the simulation pole in the 3-point bending test [178].

In the CDP constitutive model the evolution of the yield or failure surface is controlled
by two hardening variables, ε̃plt and ε̃plc , tensile and compressive equivalent plastic strains,
respectively. The CDP assumes the elastic stiffness of the material to be degraded after the
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Fig. 5.28. The general layout of the train track at the location of the SHM system.

ultimate strength is achieved. The degradation of the elastic stiffness (E = (1 − d)/Eo) is
described by two damage variables dt and dc, where Eo is the initial modulus elasticity of
the concrete. The degradation parameters take values from zero, representing the undam-
aged material, to one, which corresponds to total loss of strength. The CDP requires the
values of elastic modulus, Poisson’s ratio, the plastic damage parameters and description
of compressive and tensile behavior. The plastic damage parameters are the dilation an-
gle, the flow potential eccentricity, the ratio of initial equibiaxial compressive yield stress
to initial uniaxial compressive yield stress, the ratio of the second stress invariant on the
tensile meridian to that on the compressive meridian and the viscosity parameter that de-
fines visco-plastic regularization. In the absence of advanced materials tests, the values of
these parameters were taken as recommended by ABAQUS documentation [179] and are
set to 36°, 0.1, 1.16, 0.66 and 0.0, respectively. Furthermore, it is essential to describe the
stress–strain curve for material precisely.

The stress-strain curves of concrete in compression and tension are derived from the Fib
Model Code 2010 [4]. As shown in Fig. 5.31 (right), it is assumed that the compression
response of concrete is linear until the stress reaches a value of 30% of maximum concrete
compressive strength fcm. Then, the concrete in compression follows a parabolic curve
until the material attains fcm corresponding to a strain of εc1. Then, it is followed by
strain-softening until the concrete reaches a crushing strain εcu1 of 3.1 ‰. The behavior
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Fig. 5.29. The setup of the SHM system attached to the poles M262-25 (left), M262-27 (middle), and
M262-29 (right). The cross sections (middle) show the location of the different sensors and their donations
as used in the monitoring system.

of concrete in tension is considered linear until the mean tensile strength of concrete fctm

(corresponding to tensile strain εct) is reached. Then, it reduces linearly to the maximum
tensile strain of the concrete εctu.

Besides, the constitutive model of the steel is chosen to follow the elastic-plastic behavior
to demonstrate the expected behavior during the 3-point bending test. The constitutive
model of the steel is shown in Fig. 5.31 (left). The steel behaves linearly till the yielding stress
fy, corresponding to yielding strain εsy = fy/Es, is reached. Then, the plastic behavior of
the steel starts till it reaches the fracture strain εsu, corresponding to the fracture strain
fsu.

For simulating the poles on-site, the catenary system is simulated using geometry and
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Fig. 5.31. The constitutive models of the materials: for the steel (left), and the concrete in tension and
compression (right).

properties recommended by the literature [10, 11]. The cantilever attached the feeding wires
to the pole is simulated as a truss circular hollow section elements, made of aluminum [180].
The cantilever truss is connected to the pole using hinge connectors, as described in the
literature [181, 182]. Truss elements are used for simulating the cantilever (messenger) and
contact wires with prestressing forces of 21 and 27 kN, respectively. The return wires are
modeled as truss solid circular elements having axial forces calculated using the prescribed
sagging and self-weight [183, 184, 185].

To accelerate the analyses in this study, surrogate models to overcome the heavy com-
putations of the numerical models are built. The Kriging method is used to build non-
parametric regression models (see, for example, [34] for more information). The quality of
the regression models are evaluated by calculating the RMSE, the CoD, and the PoD of the
different models.
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5.6 Summary

In Chapter 5, the case study used in this research is described in detail. After providing a
historical background of prestressed concrete poles and catenary poles, the geometry and
properties of the poles under verification are listed. The experimental program of the ex-
periments conducted within this work is described. Three experiments were conducted on a
full-scale pole, namely, the vibration test of the un-damaged pole, the 3-point bending test,
and the vibration test of the damaged pole. The measurements of the 3-point vibration test
and the vibration test of the un-damaged pole are analyzed and prepared, and to be used
in the PI in Chapter 7. The vibration test of the damaged pole verified the behavior of the
pole in a damaged case. The analysis of corresponding measurements provides informative
information to be used in developing the status monitoring approach in Chapter 8. In addi-
tion, the SHM system attached to the poles on-site is described in detail. This information
to be read in conjunction with the analysis of recorded data in Chapter 6. Furthermore,
the details of the numerical modeling techniques and the material constitutive models used
in this study are outlined. The numerical models are essential for the PI in Chapter 7, and
the simulation of the damaged pole in Chapter 8.
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Chapter 6

Status Quo of the Pole

6.1 Introduction

In this chapter, the existing status of the poles monitored by the SHM system is verified. The
acquired data are organized in a database, and the development of the strains of concrete
and prestressing strands over the monitored period are presented. Then, the available data
are analyzed using signal processing and SSI techniques to verify the behavior of the given
poles during the monitoring period.

6.2 Database

The data recorded by the SHM system are organized in a database. The database is built to
collect attributes of each record from data collected by the sensors, which makes classification
and analysis more feasible. A table-based relational model is used to build the architecture
of the database, which contains 8002 records from approximately 9000 files (the remaining
files were not valid because of the wrong saving-format). The database is constructed with
four types of tables that are linked together using the name of the file generated by the
SHM system as a unique key that identifies each record.

The main table provides a summary of the attributes of each listed file, such as the
file name, date, sampling frequency, trigger type, temperature data, wind data, and train-
passing data. The train-passing data are calculated for each listed file and classified as
no-train or is-train. For is-train cases, the data are sub-classified based on number of pass-
ing trains, direction, speed, and length of the train. The sensor data derived from the
corresponding .BIN binary files are stored in separate tables. Another type of tables is
generated, which contains the results of SSI analysis for each file in both parallel and per-
pendicular directions. In addition, some statistical properties of each file (mean, maximum,
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Fig. 6.1. Effect of the ambient temperature on the amplitude of accelerations in parallel direction X, as
2D and 3D scatter plots: for the sensor a11.

minimum values, and standard deviations) are stored in different tables.
In the following, the collected data are used to verify the existing status of the poles

in-service as a result of environmental changes and different train passages.

6.2.1 Effects of Environmental Changes

Data collected in the database are used to detect the effects of environmental changes
over time. The ambient temperature affects the amplitude of the recorded accelerations
significantly, especially for temperature degrees above 25 ◦C. The same trend is derived for
the data recorded by sensors a11, a12, a21, and a22 in both the parallel and perpendicular
directions, as shown in Figs. 6.1 and 6.2 for sensors a11 and a12, and in Figs. 6.3 and 6.4
for sensors a12 and a22, respectively. In addition, the 3D scatter plots in Figs. 6.1 to 6.4
show that the derived trend is repeated annually.

No clear trend has been recorded for the relationship between changes in the strains of
prestressing forces and changes in the ambient temperature, as shown in Figs. 6.5 and 6.6 for
the DMS A, B, C, and D (for the location of the DMS, see Fig. 5.28). However, it is noted
that changes to the prestressing strains decrease over time, which reflects the degradation of
prestressing losses over time (see, for example, DMS A and C in Fig. 6.5 (left) and Fig. 6.6
(left)).

Ambient temperature has an impact on the strains recorded by the strain gauges at-
tached to the concrete surface of the pole; that is, DMS A, B, C, and D (for the location of
the DMS, see Fig. 5.28). Concrete strains increase by increasing the temperature, which is
logical. This correlation is shown from the results of DMS A and C, as shown in Fig. 6.5
(left), and Fig. 6.6 (left).
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Fig. 6.2. Effect of the ambient temperature on the amplitude of accelerations in parallel direction X, as
2D and 3D scatter plots: for the sensor a21.
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Fig. 6.3. Effect of the ambient temperature on the amplitude of accelerations in parallel direction Z, as
2D and 3D scatter plots: for the sensor a12.

As noted previously for the prestressing strains, the development of concrete strains
between 2015 and 2018 in Figs. 6.7 and 6.8 shows a significant change between the strains in
2015 compared to the following years, which is associated with changes in the prestressing
losses over time. It should be noted that the strains recorded by DMS D seem to be
unreasonable compared to the other DMS sensors, which means that this sensor is likely to
be in error and consequently is not considered in the interpretation of the pole behavior.

The scatter plot in Fig. 6.9 (left) and the histogram in Fig. 6.9 (middle) summarizes
the recorded wind speed and direction over the specified period of monitoring. In addition,
in Fig. 6.9 (right) the wind speed is plotted against the date of recording. The major
wind comes from the southwest direction, and the maximum-recorded wind speed reached
18 m s−1 in 2018. It should be mentioned that according to the recorded data, no clear
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Fig. 6.4. Effect of the ambient temperature on the amplitude of accelerations in parallel direction Z, as
2D and 3D scatter plots: for the sensor a22.
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Fig. 6.5. Relation between the prestressing strains and ambient temperature at DMS A (left) and DMS B
(right).

relationship can be identified between changes in the system and wind, which maintains the
ambient temperature as the principle cause of changes in the entire system.

6.2.2 Effects of Train Passing

As shown in Figs. 6.10 and 6.11, the most commonly recorded train lengths are 180, 315,
and 365 m. It is evident that the different train lengths have no effect on the amplitude
of the measured acceleration in both the parallel and perpendicular directions. The same
conclusion can be drawn from Figs. 6.12 and 6.13, as no trend can be detected between the
train speed and the amplitude of the measured accelerations. However, the most frequent
train speeds are 230, 200, 180, and 160 km h−1.
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Fig. 6.6. Relation between the prestressing strains and ambient temperature at DMS C (left) and DMS D
(right).
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Fig. 6.7. Relation between the concrete strains and ambient temperature at DMS A (left) and DMS B
(right).
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Fig. 6.8. Relation between the concrete strains and ambient temperature at DMS C (left) and DMS D
(right).
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speed over time (right).
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Fig. 6.10. Relation between train length and amplitude of accelerations: for sensors a11 (left) and a21
(right) in the parallel direction X.

6.3 Data Analysis Using Short-Time Fourier Transform

Using STFT described in Chapter 3, the preliminary analysis of accelerations recorded by
the SHM system is completed from which the natural frequencies of the given structure are
identified. A set of 45 records are selected based on date, train speed, train length, number
of passing trains, and long duration records. Using these records, seven combinations are
built to cover the most recorded cases of the train passing.

An example of the STFT analysis of a long-time record (900 s) with one train passing
is shown in Fig. 6.14. The signal processing analysis can efficiently detect the first and
second natural frequencies of the pole. However, some additional frequencies appear on the
spectrogram during the train passing. To detect the effect of the train passing, the record
is divided into two parts: the part during the train passing, and the part after the train
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Fig. 6.11. Relation between train length and amplitude of accelerations: for sensors a12 (left) and a22
(right) in the perpendicular direction Z.
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Fig. 6.12. Relation between train speed and amplitude of accelerations: for sensors a11 (left) and a21
(right) in the parallel direction X.

passing.
In Fig. 6.15, the natural frequencies of the pole detected using the sub-record after

the train passing are in better quality compared to the previous results of the full record.
To investigate this in more depth, the sub-record during the train passing is analyzed, as
shown in Fig. 6.16. It is noted that the newly apparent frequencies between 0 and 10 Hz are
more dominant than the natural frequencies of the pole. Accordingly, the ambient vibration
(that is, the signal part after the train passing) is more appropriate for detecting natural
frequencies than using the full signal that contains the train passing part. It can be said
that train passing behaves as an added noise in the detection process. Consequently, it is
recommended to use the signal outside the train passing period to obtain natural frequencies
of the pole in better quality.

87



6. STATUS QUO OF THE POLE

1 1.2 1.4 1.6
10-3

0

100

200

300

400

2015
2016
2017
2018

6 8 10 12
10-4

0

100

200

300

400

2015
2016
2017
2018

Fig. 6.13. Relation between train speed and amplitude of accelerations: for sensors a12 (left) and a22
(right) in the perpendicular direction Z.

To conclude the results of the STFT analysis, the development of natural frequencies
in both the parallel and perpendicular directions is plotted in Fig. 6.17 using the derived
mean values bounded by one standard deviation. The first and second natural frequencies
are derived with a lower standard deviation compared to the third and fourth. In addition,
no significant change in mean values of natural frequencies over the monitored period is
detected.

To study the correlation between acceleration records, the concept of signal coherence
is used. For each record, the coherence between signals of sensors in each direction is
calculated; for example, the coherence between a11 and a21. Then, the normalized absolute
change in the area under the coherence curve between different records is calculated. The
closer the values are to one, the greater the correlation to the signals. It is noted that the
most derived coherence values are above 0.6 in both the parallel and perpendicular directions
(see Fig. 6.18), which reflects a high level of correlation between the signals of the given
records. Therefore, it can be said that no significant change in the behavior of the poles can
be detected.

6.4 Data Analysis Using Stochastic Subspace Identification

Accelerations recorded in the database are analyzed using the SSI procedure described in
Section 5.3.1. Data recorded by sensors a11, a12, a21, and a22 (shown in Fig. 5.28) are
utilized to identify natural frequencies, damping ratios, and the mode shapes of the pole
in both the parallel and perpendicular directions to the train track, namely, X and Z,
respectively. The results are summarized in Table 6.1 for the first four modes.
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Fig. 6.14. Analysis of a full-record during train passing in the parallel direction X using signal processing
methods: FFT analysis (left top), PSD analysis (left bottom), and STFT analysis (right).

Table 6.1: Dynamic characteristics of the pole using SSI: natural frequencies f , and damping
ratios ζ. Symbols µ, σ denote mean values and standard deviations, respectively

ith mode
Parallel direction X Perpendicular direction Z

1st 2nd 3rd 4th 1st 2nd 3rd 4th

µf [Hz] 4.13 18.28 44.78 86.73 3.33 17.02 41.74 87.25
σf [Hz] 0.07 0.24 0.82 1.62 0.06 0.19 1.64 1.34
µζ [%] 2.01 1.38 1.66 0.93 4.19 1.79 1.84 1.04
σζ [%] 1.17 0.75 0.91 1.18 0.93 0.71 0.87 0.91

The derived natural frequencies over considered time for both the parallel X and the
perpendicular Z directions are plotted in Fig. 6.19. The values perturb around a mean value
and have no trend, precisely as found in the previous STFT analysis. Moreover, it is noted
that the third and fourth natural frequencies have more significant variances compared to
the first and second ones. The main reason is the insufficient excitation required to identify
the third and fourth natural frequencies of a good quality.

The records, in which the first four modes are identified, are selected to study the
correlation between the mode shapes. Accordingly, the MAC values are calculated and
plotted, as shown in Figs. 6.20 to 6.23, and as can be seen reach a value of one for all records
(at least for the well-identified mode shapes, that is, the first and second modes). This means
that the mode shapes are fully correlated, which shows that the pole has no damage and
emphasizes that the perturbation of the natural frequencies is caused by environmental
changes.

89



6. STATUS QUO OF THE POLE

Fig. 6.15. Analysis of a sub-record after train passing in the parallel direction X using signal processing
methods: FFT analysis (left top), PSD analysis (left bottom), and STFT analysis (right).

However, the MAC values of the third and fourth modes show less correlation as they
have values between 0.7 and 1. It should be mentioned that the third and fourth mode
shapes are not as clearly identified, precisely as in the situation of natural frequencies, as
already mentioned. This is clearer in the third mode shape compared to the fourth, where
most of the MAC values are between 0.9 and 1.

Furthermore, the scatter plots in Figs. 6.24 and 6.25 show no direct relationship between
the changes in natural frequencies and the ambient temperature, which means that seasonal
variations are most likely to be the reason behind the derived changes over time. An example
is shown in Fig. 6.26 for the first mode shape in the perpendicular direction.

Finally, to describe the changes of dynamic characteristics of the pole over the monitored
period, the derived natural frequencies are fitted to probability distributions, as shown in
Figs. 6.27 and 6.28 for both the parallel and perpendicular directions, respectively. The
derived PDF values are used in defining the un-damaged behavior of the poles that are used
for the status monitoring algorithm in Chapter 7.
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Fig. 6.16. Analysis of a sub-record within the train passing in the parallel direction X using signal
processing methods: FFT analysis (left top), PSD analysis (left bottom), and STFT analysis (right).
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Fig. 6.17. Development of natural frequencies over time, for the first four modes calculated using signal
processing methods: in the parallel direction X (left) and the perpendicular direction Z (right).

Fig. 6.18. Coherence values calculated using signal processing methods: in the parallel direction X for the
sensors a11 and a21 (left), and the perpendicular direction Z for the sensors a12 and a22 (right).
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Fig. 6.19. Development of natural frequencies overtime for the first four modes calculated using the SSI
method: in the parallel direction X (left), and the perpendicular direction Z (right).
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Fig. 6.20. MAC values of derived mode shapes for the first (left) and second (right) modes in the parallel
direction X.
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Fig. 6.21. MAC values of derived mode shapes for the third (left) and fourth (right) modes in the parallel
direction X.
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Fig. 6.22. MAC values of derived mode shapes for the first (left) and second (right) modes in the perpen-
dicular direction Z.
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Fig. 6.23. MAC values of derived mode shapes for the third (left) and fourth (right) modes in the
perpendicular direction Z.
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Fig. 6.24. Ambient temperature against the natural frequencies calculated using the SSI method in the
parallel direction X, for the first four modes depicted from left to right, respectively.

93



6. STATUS QUO OF THE POLE

3.2 3.3 3.4 3.5
-10

0

10

20

30

40

50

60

16.5 17 17.5
-10

0

10

20

30

40

50

60

36 38 40 42 44 46
-10

0

10

20

30

40

50

60

84 86 88 90
-10

0

10

20

30

40

50

60

Fig. 6.25. Ambient temperature against the natural frequencies calculated using the SSI method in the
perpendicular direction Z, for the first four modes depicted from left to right, respectively.
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Fig. 6.26. Development of the natural frequencies overtime for the first mode, calculated using the SSI
method in the perpendicular direction Z.
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Fig. 6.27. PDF values of derived natural frequencies for the first four modes in the parallel direction X,
depicted from left to right, respectively.
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Fig. 6.28. PDF values of derived natural frequencies for the first four modes in the perpendicular direction
Z, depicted from left to right, respectively.
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6.5 Summary and Conclusion

Data recorded by the sensors of the SHM system is analyzed to build the existing status
of the pole over a given time. Furthermore, system identification is made using the data
recorded by the attached accelerometers. Both the signal processing and SSI techniques are
used in this step. Based on the results, all indications conclude that seasonal changes are
the leading cause behind the change of the dynamic characteristics of the pole in-service.
For this reason, the natural frequencies of the pole fluctuate around a mean value during the
specified period of monitoring. This makes the derived PDF values an excellent candidate
to represent the behavior of the un-damaged poles for further checks, as in Chapter 8.
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Chapter 7

Parameter Identification of the Pole

7.1 General Considerations

It is noted that each of the conducted experiments is individually imperfect for inferring
the full set of unknown parameters to an acceptable quality. Moreover, the challenge arises
due to the limitation of expanding the experimental program to conduct more required
experiments, and the distinctive nature of the achieved measurements. This increases the
complexity of the current case study and distinguishes it from other classic PI problems;
however, it is an additional motivation to adapt the Bayesian approach to overcome these
obstacles. The flow chart in Fig. 7.1 depicts the implementation of the proposed approach
(see Section 4.1.2) to infer the unknown parameters x of the given case study using the avail-
able observations ỹ. To implement the proposed approach, observations of the vibration test
and the 3-point bending test of the undamaged pole is used, as presented in Sections 5.3.1
and 5.3.2, respectively. This is achieved based on three tracks (T1, T2, and T3) that are
shown in Table 7.1. In the tracks T1 and T2, the proposed strategies (S1 and S2, see Sec-
tion 4.1.4) are applied, in parallel, using the observations of the 3-point bending test of the
undamaged pole. Then, the most appropriate results of one of the applied strategies are
consequently chosen. In track T3, some of identified parameters is selected as informative
priors for the PI process, using the observations of the vibrations test and strategy S1.

Table 7.1: The applied tracks.
Track Observations Strategy Identified parameters
T1 Bending test S1 εPT , fcm, εc, fctm, Ec
T2 Bending test S2 εPT , fcm, εc, fctm, Ec
T3 Vibration test S1 Ec, ρc

For the sake of this study, the geometry parameters, the properties of the reinforcement
bars, and the prestressing stands are considered as deterministic parameters d. The geom-
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Fig. 7.1. Implementing of the proposed strategies of PI.

etry of the corresponding model M is built, based on the nominal values that are shown in
Table 5.1. The exceptions are the thicknesses of the walls where the measured values from
the laboratory are applied. The nominal properties of the prestressing and the reinforcement
steel are applied as listed in Table 5.2.

From the UQ framework and the engineering point of view, the key parameters that
have a significant influence on the behavior of the pole are the concrete properties and the
strains of the prestressing strands. For this reason, the vector of the unknown parameters
is x ≡ {εPT , fcm, εc, fctm, Ec, ρc}T .

Except for the prestressing initial strain εPT , the prior densities of the unknown pa-
rameters x are assigned to follow PDFs of uniform distributions. This is because the prior
knowledge of parameters is not enough to formulate informative priors. The priors π0(x)

are carefully bounded, based on the available information and engineering prejudgment con-
sidering the values recommended by fib Model Code 2010 [4], that is, π0(x) ∼ U(a, b), as
listed in Table 7.2.

Based on the measurements (see Section 5.3.2), the prior distribution of εPT follows a
normal distribution π0(εPT ) ∼ N (µPT , σ

2
PT ) with unknown mean µPT and variance σ2

PT . In
this case, the literature recommends considering the conjugate priors of the hyperparameters
θx as the normal distribution for the unknown mean and the inverse gamma distribution
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Table 7.2: The uninformative PDFs priors of the parameters.
Parameter PDFs
Concrete compressive strength, fcm [MPa] U(80, 120)

Concrete strain at maximum compressive stress, εc [‰] U(2.5, 3.0)

Concrete tensile strength, fctm [MPa] U(4.0, 6.0)

Concrete Modulus of Elasticity, Ec [GPa] U(43, 53)

Concrete density, ρc [g cm−3] U(2.1, 2.5)

for the unknown variance [60]. Accordingly, the priors of the mean µPT and the variance
σ2
PT are chosen such as π0(µPT ) ∼ N (3.1, 0.4) and π0(σ2

PT ) ∼ IG(5.0, 0.126), respectively.
This corresponds with a Maximum A Priori MAPrσ2

PT
= 0.021 and a standard deviation

SDσ2
PT

= 0.018. Besides, the variance of the total errors σ2
E is chosen to be a global

hyperparameter θE has a uniform prior distribution π0(σE) ∼ U(0.005, 0.1), which makes
sense in this case. Moreover, due to some physical interpretations, the independency between
the parameters was assumed.

7.1.1 Tracks T1 and T2 (bending test)

The proposed strategies S1 and S2 are implemented in parallel. Afterward, the results of
different applied strategies are compared to detect their respective advantages. Two criteria
measure the quality of the inferred parameters: the uncertainty represented by the variance
of the parameters, and the shape of the posterior distribution.

The realizations of the observations ỹi ≡ δi are created from the deflections δi of the
undamaged pole. The deflection values were measured at different time steps at the specified
point P1, P2, and P3 respectively, see Section 5.3.2.

Strategy S1 is applied by calculating the likelihood from Eq. (4.9) using the observation
ỹ. To apply strategy S2, the observations are divided into three subsets, based on the
sensitivity indices presented in Figs. 5.15 to 5.17, that is, K = 3 and ỹ = {ỹ1, ỹ2, ỹ3}T .
The corresponding deflection ranges of the subsets are specified in Table 7.3.

Table 7.3: The classification of the observations ỹ (strategy S2).
Step Observation subset Deflection range1 [mm] Sensitive parameters
1 ỹ1 [0 - 6] Ec
2 ỹ2 (6 - 80] fctm, εPT
3 ỹ3 (80 - 110] fcm, εc

1 the deflection at mid-span (Point P1) as a reference.

In this step, the unknown parameters vector x ≡ {εPT , fcm, εc, fctm, Ec}T are inferred.
It is worth mentioning that, due to the parameters independency, the posterior distribution
is the product of the marginal posterior distributions, leading to consider each of them as
the priors in the next step of the sequential procedure. However, the concrete density ρc
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cannot be identified in this step because of the limitation of the conducted experiment to
measure the insignificant deflection caused by the own weight of the pole, as mentioned
in Section 5.3.2. Moreover, additional deterministic parameters ξ are assigned here to
define the concrete constitutive model, in the corresponding numerical model, as descried
Section 5.5.

At the end of the tracks T1 and T2, the unknown parameters are inferred by sam-
pling from the posterior π(µPT , σ

2
PT , fcm, εc, fctm, Ec, σ

2
E|δ). For this reason, the TMCMC

algorithm is run for Ns = 5 · 103 samples. Then, the statistical moments of the inferred
parameters are calculated.

7.1.2 Track T3 (vibration test)

In this track, the strategy S1 is applied by using the observations vector ỹ consisting of the
natural frequencies that are derived in Section 5.3.1, that is, ỹi ≡ fi. Two parameters can
be identified through this track corresponding to the linear behavior of the structure in the
vibration test, namely, x ≡ {Ec, ρc}T .

It is known from the analytical solution of dynamic systems that fi ∝
√
Ec/ρc. For

example, given a cantilever beam has Young’s modulus E, and mass density ρ. The cross
section of the beam changed linearly along the its length L. The natural frequencies of the
described beam is calculated [186], s follows:

fi =
λ2
i

2πL2

√
EIbot
ρAbot

, i = 1, 2, 3, · · · , (7.1)

where fi is the natural frequency corresponding to the ith mode shape, λi is a constant;
Ibot,Abot are the moment of inertia of the cross-section and the cross-sectional area at the
fixed end the cantilever, respectively.

This means that only the fixed ratio κ = Ec/ρc can be identified. The values of Ec and
ρc are unidentifiable, because any values of Ec and ρc that satisfy κ is valid as a solution.
This phenomenon is certified in the plot of log-likelihood shown in Fig. 7.2. The flat region
in the likelihood means that the observations uniquely determine the parameter values [49].
To overcome this, the posterior of Ec from track T2 is used as an informative prior in
this track, as it revealed better results. This makes ρc identifiable and results in obtaining
the posteriors of Ec and ρc. In this track, 5 · 103 samples are drawn from the posterior
π(Ec, ρc, σ

2
E|f) using the TMCMC algorithm.
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Fig. 7.2. 3D contours illustrate the log-likelihood of κ = Ec/ρc (vibration test).

7.2 Results of Bayesian Approaches

The results of applying tracks T1 to T3 are depicted in Fig. 7.3. The solid line represents
the results of the S2 strategy, whereas the dashed line shows the results of implementation
of the S1 strategy. The proposed sensitivity-based strategy adds significant improvements
to the quality of the inferred parameters leading to more accurate posteriors with smaller
variances [142].

This is because the S2 strategy is built in a step-wise manner. In each step, it focuses only
inferring highly sensitive parameters, which leads to an increase in the quality of inferred
parameters. Moreover, the obtained posteriors of these sensitive parameters are used in the
following step as a formative prior, which also leads to an improvement in the quality of
the other parameters. On the contrary, in S1 strategy, the sensitivity of the parameters is
averaged on the full set of data, which results in losing some information that is embedded
in the available observations. This results in inferring parameters at a lower quality. This
emphasizes that uncertainty and sensitivity are associated, as mentioned in Section 4.1.4.2.

However, the mean values of unknown parameters are inferred by both strategies with
good agreement. A summary of the statistical properties of parameters is listed in Tables 7.4
and 7.5. It is clear, how much these values differ from the nominal properties that are
provided in the datasheet of the structure. The inferred parameters are 20% higher than
the nominal values, (see Section 5.2.2). This shows the importance of the PI process as an
essential step before evaluating the behavior of the structure.

Correlations of different pairs of parameters are verified by the scatter plots of the
samples. Fig. 7.4 shows the high negative correlation of parameters εPT and fctm in the
model of the 3-point bending test. These two parameters are correlated with a linear

101



7. PARAMETER IDENTIFICATION OF THE POLE

2.5 3 3.5
0

10

20

80 90 100 110 120
0

0.2

0.4

2.6 2.8 3
0

5

10

45 50 55
0

0.5

1

4 4.5 5 5.5
0

2

4

2.1 2.2 2.3 2.4 2.5
0

5

10

Posteriors (Sensitivity-based) Posteriors (All-in-one)

Fig. 7.3. Comparing the results of the applied Bayesian approaches: the sensitivity-based approach and
the All-in-one approach.

Table 7.4: The properties of the posteriors of the identified parameters using the Bayesian strategy S1:
the Maximum A Posteriori MAP, the mean value µ, and the standard deviation SD.
Parameter εPT [‰] fcm [MPa] εc [‰] Ec [MPa] fctm [GPa] ρc [g cm−3]

MAP 3.16 103.11 2.87 48.29 5.01 2.32
µ 3.20 104.63 2.76 48.63 4.83 2.34
SD 0.10 3.20 0.13 1.25 0.36 0.06

Table 7.5: The properties of the posteriors of the identified parameters using the Bayesian strategy S2:
the Maximum A Posteriori MAP, the mean value µ, and the standard deviation SD.
Parameter εPT [‰] fcm [MPa] εc [‰] Ec [MPa] fctm [GPa] ρc [g cm−3]

MAP 3.16 105.36 2.73 48.06 5.11 2.32
µ 3.17 105.10 2.74 48.49 4.98 2.33
SD 0.03 1.36 0.04 0.32 0.11 0.04

Pearson coefficient of correlation ρεPT ,fctm = −0.87. From an engineering point of view, this
is correct, as the higher the applied prestressing strain εPT , the lower is the required tensile
strength of the concrete fctm to have the same cracking moment of the given cross section.

According to the results of track T3, the parameters Ec and ρc are highly correlated
with a correlation coefficient of ρEc,ρc = 0.9, as shown in Fig. 7.5. This result is expected,
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Fig. 7.4. The correlations of the identified parameters - tracks T1 and T2 (3-point bending test).

and discussed in Sections 5.3.1 and 7.1.2. However, it supports the findings of this work.
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Fig. 7.5. The correlations of the identified parameters - track T3 (vibration test).
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In addition, the listed hyperparameters in Table 7.6 are sampled from the posterior.
The inferred MAP values of the σE that evaluate the total errors η are 0.034 and 0.041 for
the observations of bending and vibration tests, respectively, which are reasonable for the
types of experiments implemented, and the numerical models. Besides, the inferred values
of the µPT and σ2

PT match the measured values in the laboratory to an acceptable extent,
see Section 5.3.2.

Table 7.6: The properties of posteriors of the hyperparameters: the Maximum A
Posteriori MAP, the mean value µ, and the standard deviation SD.
Hyperparameter σE [-] a σE [-] b µPT [‰] b σ2

PT [-] b

MAP 0.041 0.034 2.72 0.015
µ 0.040 0.029 2.86 0.023
SD 0.0067 0.0037 0.18 0.007

a,b Using the observations of the vibration and bending tests, respectively.

7.3 Results of the Deterministic Approach

For the identification of the parameters x = {εPT , fcm, εc, Ec, fctm, ρc}T of the given struc-
ture, the deterministic approach described in Section 2.5.2 is implemented. The inferred
parameters are assumed to follow normal distributions. The parameters are estimated at
95% confidence level, that is, α = 0.05. The results of this approach are summarized in
Table 7.7.

Fig. 7.6 represents a comparison between the results of the applied approaches. A perfect
match can be recognized for the mean values of the identified parameters, except for the
mean values of the concrete density ρc and the tensile strength fctm, where a small bias
of 3% and 2%, respectively, appeared. However, the variances of identified parameters
differ considerably and show no specific trend, but in most cases the variances in Bayesian
approach have higher values [55].

It is expected to have such a difference between the results of the deterministic and
Bayesian approaches. This is because the Markov estimator is based on the concept of
deterministic parameter identification. It may get stuck into the local minima of the cost
function, mainly in the case of noisy data or unidentifiable parameters. This causes the bias
of the mean values compared to Bayesian results. Besides, the Markov estimator evaluates

Table 7.7: Summary of the identified parameters using Markov estimator: the mean value µ, and the
standard deviation SD.
Parameter εPT [‰] fcm [MPa] εc [‰] Ec [MPa] fctm [GPa] ρc [g cm−3]

µ 3.16 105.08 2.70 48.19 5.07 2.27
SD [ %] 2.82 1.19 0.60 3.05 0.25 2.04
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Fig. 7.6. Comparing the identified parameters of the ’sensitivity-based’ Bayesian approach and the ’Markov
estimator’ deterministic approach.

the uncertainty of the parameters based on the local sensitivity at the optimized solution.
This leads to considerable deviations of the variance values between the two approaches.

Considering the complexity and computational efforts, the Markov estimator can be im-
plemented mainly for the mean values and, to some extent, as an indicator of uncertainty
of the parameters. The results of the Markov estimator match the results of the Bayesian
approach to an acceptable tolerance, which makes the Markov estimator a fast and straight-
forward tool to provide an approximation of the solution. The Bayesian approach, in com-
parison, requires more efforts; however, it can precisely draw the probability distributions of
the identified parameters revealing some important characteristics of its distributional be-
havior. Besides, the Bayesian approach provides a good overview of the correlation between
parameters, which leads to a better understanding of the studied problem [52].
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7.4 Validation of the Results

To validate the identified parameters, the mean values of the identified parameters from
strategy S2 are used as input of the FEM models. However, the results of the FEM are
compared with the corresponding observations.

In the case of the bending test, the results of the FEM model are plotted against the
hysteresis loops of the force-deflection derived from the measurements of the bending test.
Fig. 7.7 depicts the agreement between the experimental measurements of the bending test
at points P1, P2, and P3, together with the outputs of the FEM model.
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Fig. 7.7. Validation of the results using mean values of the identified parameters and the bending test
model. The deflections are presented at the points P1 (left), P2 (middle), and P3 (right).

Table 7.8: Validation of the results - vibration test.
Mode shape a 1 - v 2 - v 3 - v 4 - v 5 - v 1 - h 2 - h 3 - h 4 - h 5 - h
f [Hz]b 15.54 42.09 81.16 131.76 192.83 15.37 41.65 80.35 130.48 191.04
Difference [%]c 0.13 1.36 0.69 0.05 0.21 1.22 1.23 0.92 0.84 0.85
a (i − v) is the ith mode shape in vertical directions, and (i − h) is the ith mode shape in horizontal
directions, i = 1, · · · , 5.

b The Natural frequencies f are calculated using the mean values of the identified parameters through
the ’sensitivity-based’ Bayesian approach.

c The difference is calculated in comparison to the measured values of the natural frequencies that are
listed in Table 5.3.

In the same manner, the first five natural frequencies in the horizontal and vertical
direction (according to the test setup) are derived from the FEM model using the inferred
parameters. The results are listed in Table 7.8. The trivial differences show that the results
of the FEM model conform (with high accuracy) with the experimental observations of the
vibration test.

Finally, a comparison is done between the inferred parameters, and the conventional
values of the concrete properties that are specified by the different engineering standards.
Accordingly, the equations of the Fib Model Code 2010 [4], which specifies the concrete
properties based on the compressive strength of the concrete fcm, are utilized. Thus, the

106



7.5 Summary and Conclusion

MAP values of the fcm from Table 7.5 are used. The calculated properties show that the
inferred parameters are in line with the recommended values of the given code with relatively
acceptable tolerance, as shown by the differences in Table 7.9.

Table 7.9: The concrete properties based on the recommendation the Fib code [4]
and the MAP of the fcm = 105.36 MPa.

Parameter fcm [MPa] εc [‰] Ec [MPa] fctm [GPa]
value 105.36 2.90 47.10 5.18

Difference [%]a — 6.20 3.10 1.40
a The differences are measured to the MAP values in Table 7.5.

7.5 Summary and Conclusion

The Bayesian probabilistic approach is applied to identify the unknown parameters of the
given structure. First, the all-in-one strategy (S1) is implemented, where six parameters are
inferred by utilizing the FEM model and observations of the multiple experiments.

The sensitivity-based strategy (S2) is implemented by dividing the observations into
subsets based on the sensitivity of the parameters. Then, the Bayesian approach is applied
in a sequential manner, considering the posterior of the current step as the prior to the
subsequent step.

In both strategies, the TMCMC algorithm is used to sample from the posterior. The
results showed a considerable improvement in the quality of the inferred parameters and
confirmed the associations between the uncertainty and the sensitivity of the parameters.
Furthermore, considering the unknown total errors as hyperparameters allowed to evaluate
the total errors of the whole PI process.

The deterministic UQ framework is also implemented, where the concept of the Markov
estimator is used to evaluate the uncertainty of the parameters. The results show that
both frameworks matched each other with acceptable tolerance. However, the differences
in results are normal because, unlike the Bayesian approach, the Markov estimator is based
on the local sensitivity of parameters. Thus, the Bayesian approach is more accurate for
evaluating the uncertainty of the unknown parameters despite requiring more computational
effort.

In the validation step, a perfect agreement is achieved when using the mean values of the
inferred parameters as inputs for the numerical model to compare results to the experimental
observations. Additionally, it is proved that the inferred properties of the concrete are in
line with the recommended values of the Fib Model Code 2010 for the same compressive
strength.

The considerable deviation between the inferred parameters and the nominal ones draws
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attention to the importance of the PI process before conducting any study on the existing
structures. This emphasizes the argument at the beginning of this chapter and laid the
foundations for more appropriate implementation of the subsequent phases of this study.
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Chapter 8

Status Monitoring of Poles

8.1 Introduction

As verified in Chapter 6, the changes detected in natural frequencies were mainly due to sea-
sonal, repeated, and transient actions. In other words, no damage was detected on the poles
monitored by the SHM systems. To implement the proposed monitoring approach, men-
tioned in the Section 4.2, the behavior of the damaged poles is studied using the FEM model
in Section 8.2. The natural frequencies and mode shapes of the damaged pole are compared
with the healthy data of the pole obtained in Chapter 6 using the SM algorithm described
in Section 4.2.2. Then, the damage identification algorithms described in Section 4.2.3 are
implemented. As a result, the possible damage can be localized and quantified.

8.2 Simulation of Damaged Pole

The results in Chapter 5 show that the monitored poles are completely healthy and do not yet
have any damage. In the absence of any further data of damaged poles in service, the behav-
ior of the damaged pole is verified using FEMmodels. To simulate the long-term degradation
of concrete over the life-time of the structure (global change), the analysis of the FEM model
is completed using different values for the concrete modulus of elasticity Ec in the range of
Ec = [15−55] GPa, with an increment of 3 GPa. For each global value of Ec, local damages
are repeated at heights ϑa = {0.6, 1.0, 1.50, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0}T ×103 mm,
measured from the bottom of the pole. At each local damage point ϑa, five damage severity
ratios α = {0, 0.25, 0.50, 0.75, 0.95}T are used. For a better interpretation of the results,
the damage locations ϑa are normalized in the range of [0−1], such that the normalized di-
mensionless damage locations are ϑ = {0.01, 0.05, 0.11, 0.17, 0.21, 0.26, 0.32, 0.37, 0.47, 0.58

, 0.68, 0.79}T .
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Fig. 8.1. Effects of changing Ec on natural frequencies f (global change): relative changes in f to the case
of Ec = 48 GPa (left), MAC values of the first four modes for the pair of Ec = 15 and 55 GPa (middle),
COMAC values at ten equally-spaced coordination along the pole for the pair of Ec = 15 and 55 GPa
(right).

The severity ratio of damage αi is defined as the depth of the damaged area to the
diameter of the cross-section at the damage location ϑi in the considered direction. Two
main directions are considered: parallel and perpendicular to the train track, that is, X,
and Z respectively. The damage is simulated by reducing Ec at the damage location (local
change), which is equivalent to a reduction in stiffness of the pole.

The changes in natural frequencies f due to global changes of Ec are calculated relative
to the case of Ec = 48 GPa, as shown in Fig. 8.1 (left). As expected, natural frequencies are
reduced by decreasing the value of global Ec with the same ratios for all mode shapes. To
verify the changes of mode shapes, MAC and COMAC values for each pair of Ec values are
checked. It is noted that the mode shapes of different models are fully correlated regardless
of the value of Ec. As shown in Fig. 8.1 (middle) and (right), the example presents the
values of MAC and COMAC values for the pair of Ec = 15 and 55 GPa. Consequently,
using relative changes in natural frequencies is more suitable for detecting global changes
rather than using the values of MAC and COMAC.

In Fig. 8.2, the surfaces describe relative changes in natural frequencies of the first four
modes due to local damage with different values of damage severity α, and normalized
damage location ϑ. The relative natural frequency ∆f is defined, as follows:

∆f i =
|fdi − fui |

fui
, (8.1)

where fdi and ∆fui represent the natural frequencies of the ith mode of the damaged and
un-damaged pole, respectively.

The shape of each of the surfaces in Fig. 8.2 matches the shape of the corresponding mode
shape [187]. It is known that the mode shape is not sensitive to damage when the damage
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Fig. 8.2. Relative changes of natural frequencies ∆f for the [1st−4th] modes, calculated for different values
of damage severity α, and normalized damage location ϑ.

is located near the nodes of the mode shape. Similarly, this means that some surfaces are
more pertinent to detecting damage at a specific location than others. However, merging
the informative data from multiple surfaces provides an excellent candidate for building a
damage detection algorithm that can detect the location and severity of damage along the
pole.

8.3 Implementing the Status Monitoring Algorithm

To implement the SM algorithm described in Section 4.2.2, changes in natural frequencies
are artificially generated using the statistical properties mentioned in Section 6.4 and the
features of both the global and local changes mentioned in Section 8.2. Data for the first five
years are considered for defining the reference status; that is, the un-damaged properties of
the pole (see the probability distributions of the natural frequencies derived in Chapter 6).
Data is generated for 5 years (commencing in 2015) with a sampling frequency of one
measurement per hour. To simulate the expected future status of the poles, three damage
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Fig. 8.3. Damage indices DIs of Scenario 1 using the natural frequencies [f1 − f4]: for damage severity
α = 20% (left), and for damage severity α = 30% (right).

scenarios cover the expected damage cases use of the pole, as follows:

1. Scenario 1 (sudden damage status): represents the case of local damage due to
sudden damage propagation over a short period, that is, 1 month. The damage starts
after 15 years. Four damage severity ratios α = {0.2, 0.3, 0.4, 0.5}T are tested. The
damage location is chosen at the bottom of the pole, such that ϑ = 0.05. An example
of the scenario is the loss of the prestressing forces due to failure of the bond between
the concrete and strands.

2. Scenario 2 (slow damage status): describes the case of local damage due to slow
damage propagation that starts after 15 years and increases linearly over a long period
(15 years). The maximum damage severity is considered as α = 0.95. This scenario
represents the increase of damage width over time, for example, due to creep or fatigue.

3. Scenario 3 (global change status): simulates the status of an un-damaged pole
with global changes over a given period (see Fig. 8.1), such as global changes due to
material degradation over time, or changes in boundary conditions. The maximum
change of mean values of the natural frequencies are considered as 5%.

To implement the proposed scenarios, the generated time history of the natural fre-
quencies of the first four modes [f1 − f4] are utilized. The damage indices of the proposed
scenarios are calculated using a sliding window with a length of wlen = 2 years, and a win-
dow shift of wsh = 2 months. Based on the reference status, the threshold is considered as
0.63, which corresponds to ACL = 3σλ of the data.

The damage indices resulting from sudden damage status (Scenario 1) for different dam-
age severity α are depicted in Figs. 8.3 and 8.4. As expected, damage severity has a signif-

112



8.3 Implementing the Status Monitoring Algorithm

2020 2030 2040 2050 2060
0

1

2

3

4

5

2020 2030 2040 2050 2060
0

5

10

15

Fig. 8.4. Damage indices DIs of Scenario 1 using the natural frequencies [f1 − f4]: for damage severity
α = 40% (left), and for damage severity α = 50% (right).
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Fig. 8.5. Damage indices DIs using natural frequencies [f1 − f4]: Scenario 2 (left), and Scenario 3 (right).

icant influence on the calculated damage indices. Starting from damage severity α = 20%

in Fig. 8.3 (left), the damage is detected after a considerable period of crack propagation.
The damage is detected by mode 2, which is the dominant mode (in this case) according
to the damage location (see, for example, Fig. 8.2 for the effect of damage location ϑ and
damage severity α on the relative change of the natural frequencies). For the damage sever-
ity α = 30% shown in Fig. 8.3 (right), modes 1 and 3 start to be sensitive to damage. In
Fig. 8.4, the damage is obviously detected on time for the damage severity α = 40% and
α = 50%. It should be noted that the relative differences between the DI1 to DI4 increase
significantly by increasing the damage severity α.

The damage indices resulting from global changes (Scenario 3) are shown in Fig. 8.5
(right). Compared with Scenario 2, it is evident that the relative differences between DI1 to
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DI4 are not clear. The indices DI1 to DI4 change simultaneously and follow the same trend as
changes for natural frequencies shown in Fig. 8.1. Moreover, despite the maximum relative
change in natural frequencies at the end of the considered time in both Scenarios 2 and 3
being approximately 5%, the damage indices of the dominant modes for the sudden damage
scenario (Scenario 2) are three times greater than the corresponding ones for the global
changes scenario (Scenario 3). Having these indicators, the damage indices for Scenario 3
can be distinguished easily from those of Scenarios 1 and 2.

In the case of slow damage status (Scenario 2), where the damage propagates gradu-
ally over long time, the damage indices are similar to those of Scenario 1. As shown in
Fig. 8.5 (left), the damage is detected precisely when the damage severity reaches α = 40%.
The relative differences between DI1 to DI4 are also evident, and increase dramatically by
increasing the damage severity.

Consequently, besides detecting the damage, the relative sensitivity of the modes to
damage can be considered a good indicator for distinguishing the scenarios of sudden local
damage (Scenarios 1 and 2) from the global changes scenario (Scenario 3). Moreover, this
emphasizes the importance of considering all available data from different sources using data
fusion techniques to detect the damage.

As a conclusion, the damage indices are suitable for detecting the damage caused by
the proposed scenarios starting from a damage severity α = 35%, whereas the pole shows
low sensitivity to damage severity below this value for all modes, as shown Fig. 8.1. In
addition, the relatively small change in relative natural frequencies due to damage severity
below the α = 30% is located within the variance of the identified natural frequencies listed
in Table 6.1. It should be noted that small cracks are not considered severe for this type of
pole because of the role of prestressing forces in closing the cracks as notified in literature
(for example, [13]). As mentioned in Section 5.3.3, this phenomenon was also noticed after
conducting the 3-point bending experiment (see Section 5.3.1).

8.4 Implementing Damage Identification Algorithms

In the absence of any data on the damaged poles in service, artificial measurements are gen-
erated using the FEM simulation mentioned in Section 8.2. The locations of the sensors are
chosen to be equally distributed along the pole using distances of dasn = {500, 1000, 1500, 2000,

2500}T mm, corresponding to normalized dimensionless distances of dsn = {0.05, 0.11, 0.16,

0.21, 0.26}T . The artificial measurements are created using combinations of damage location
ϑ, damage severity α (see, Section 8.2), and distances between sensors. The artificial modal
curvatures and natural frequencies are perturbed using Gaussian noise with coefficients of
variation of 0, 1, 3, 5, and 8% in addition to a bias of 1% of the no-noise values. In total,
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Fig. 8.6. Damage localization of damaged pole using curvature algorithm: in the vertical direction (left),
and in the horizontal direction (right), according to the experimental setup

1500 records of artificial measurements are generated and utilized for implementing the
proposed damage identification algorithms. Both the CDI and FDI algorithms are applied
using the first four mode shapes and natural frequencies. For easy interpretation of results,
normalized dimensionless damage location in the range [0− 1] is used [144].

8.4.1 Validation of the Curvature-based Damage Identification Algorithm

The CDI algorithm is validated using measurements from the tested damaged pole men-
tioned in Section 5.3.3. The modal curvatures of the first five modes of both damaged and
undamaged pole are utilized. These results coincide with the results shown in Figs. 5.25
and 5.26. In addition, Fig. 8.6 (left) shows that the damage is localized to reasonable accu-
racy in the vertical direction (the direction of main cracks), keeping in mind that the cracks
are spread along the pole mainly in the middle part of the pole (see Fig. 5.18). As discussed
in Section 5.3.3, and shown in Fig. 8.6 (right), the results of horizontal direction are less
able to localize the damage; however, they still provide some useful information.

The efficiency of the CDI algorithm is based on the number of sensors, distances between
sensors, and the accuracy of calculated modal curvatures. Therefore, it is noted that the
damage is localized accurately when the damage is close to one of the sensors. However,
the CDI algorithm provides an informative prior that could be used in conjunction with
other damage detection algorithms to localize the damage precisely; for example, using the
normalized fitted lines in Fig. 8.6 as an informative prior.
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Fig. 8.7. Localizing the damage ϑ̂ using the curvature algorithm: for ϑ = 0.05, α = 25%, noise = 1%, and
dsn = 0.05 (left); for ϑ = 0.05, α = 75%, noise = 3%, and dsn = 0.05 (right).
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Fig. 8.8. Localizing the damage ϑ̂ using the curvature algorithm: for ϑ = 0.32, α = 50%, noise = 1%, and
dsn = 0.26 (left); for ϑ = 0.11, α = 50%, noise = 5%, and dsn = 0.26 (right).

8.4.2 Implementing the Curvature-based Damage Identification Algo-
rithm

By implementing the CDI algorithm, it is noted that its accuracy is sensitive to damage
severity α, noise level, and distance between damage location and adjacent sensor. Examples
of implementing this algorithm using artificial measurements in the direction perpendicular
to the train track Z are shown in Figs. 8.7 and 8.8. The histograms and fitted lines present
the probability of the damage location along the pole. The algorithm provides a higher
probability to the points around the damage location, which makes it a good prior for
localizing the damage. However, it is evident that for distances between sensors of dsn =

[2000−2500] mm, more informative priors are achieved (even with high noise level) compared
with the cases of smaller distances between sensors [144].
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8.4.3 Implementing the Frequency-based Damage Identification Algo-
rithm

As a new signal is recorded by the SHM system, the natural frequencies of the structure can
be evaluated using signal processing, or SSI methods, as mentioned in Sections 6.3 and 6.4.
Consequently, the FDI algorithm is implemented using the artificial measurements. The CDI
algorithm is used to build informative priors to damage locations π0(ϑ). Uninformative
priors of damage severity α are used, such that π0(α) ∼ U(0.0, 1.0). The posteriors are
derived by implementing the TMCMC algorithm for 1000 samples [144].
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Fig. 8.9. Identified damage severity α̂, and damage location ϑ̂, using frequency-based algorithm for (noise =
1%): ϑ = 0.05, and α = 25% (left); ϑ = 0.37, and α = 50% (right).
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Fig. 8.10. Identified damage severity α̂, and damage location ϑ̂, using frequency-based algorithm for
(noise = 5%): ϑ = 0.05, and α = 25% (left); ϑ = 0.37, and α = 50% (right).

Examples of the results of the FDI algorithm are depicted in Figs. 8.9 and 8.10, for noise
levels of 1 and 5%, respectively. The posteriors of the identified location ϑ̂ and the identified
severity α̂ are shown for selected damages at different locations and severities. The FDI
algorithm identifies the damage characteristics to an acceptable accuracy. The noise level
significantly affects the variances of the identified damage parameters.

To evaluate the efficiency of the FDI, the Re-constructed Errors (ReErr) are calculated
using 1500 records of artificial measurements. The ReErr is defined as the absolute difference
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Fig. 8.11. Reconstructed error (ReErr) of the identified damage location ϑ̂ using frequency-based algorithm:
the MAP values ϑ̂MAP (left), the standard deviation σϑ̂ (right).
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Fig. 8.12. Box-plot of reconstructed error (ReErr) of the identified damage location ϑ̂, classified based on
noise level: the MAP values ϑ̂MAP (left), the standard deviation σϑ̂ (right).

between the artificial damage and MAP values of the identified damage characteristics; that
is, (α̂MAP , ϑ̂MAP ). The precision of the results is measured by standard deviations of the
posteriors; that is, (σα̂, σϑ̂).

The ReErr and their σ are shown in Figs. 8.11 and 8.15 for ReErr of ϑ̂MAP and
α̂MAP , respectively. For a better interpretation of the results, standard box-plots are used
to evaluate the statistical properties of the ReErr at each pair of noise levels and damage
severity α. For greater clarity, the box-plots are classified based on noise level, α, and ds,
as shown in Figs. 8.12 to 8.14, and Figs. 8.16 to 8.18 for the ReErr of ϑ̂MAP , and α̂MAP ,
respectively.

As shown in Fig. 8.11 (left), the ReErr of identified damage location ϑ̂MAP increases by
increasing the noise level, and decreases by increasing damage severity α, which is expected.
It is evident that the efficiency of the FDI algorithm increases dramatically starting from
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Fig. 8.13. Box-plot of reconstructed error (ReErr) of the identified damage location ϑ̂, classified based on
damage severity: the MAP values ϑ̂MAP (left), the standard deviation σϑ̂ (right).

damage severity α = 0.5. Then, it continues with good accuracy up to noise level of 0.05.
The standard deviations of the identified damage location σϑ̂, shown in Fig. 8.11 (right),
follows the same trend; however, these are more affected by the noise levels even for the
cases of high damage severity, for example, α = 0.95.

The box-plots in Fig. 8.12 provide a more accurate representation of the effect of the
noise level on the ReErr of ϑ̂MAP . The maximum values of ReErr reach reasonable limits
even for a high level of noise; that is, 0.1 for the noise level of 0.08 with a maximum
standard deviation of 0.24. In contrast, the ReErr in Fig. 8.13 reaches a maximum value
of 0.17 at low damage severity α = 0.25, and decreases dramatically for damage severity
up to 75%. The same is concluded for the corresponding standard deviations, which touch
the maximum value of 0.23 at damage severity α = 0.25. The results in Fig. 8.14 fluctuate
around converged values with a simple preference for the cases of ds = 0.26 considering the
values of the ReErr of ϑ̂MAP and their σϑ̂. However, outliers can be seen in the box-plots
that count less than 0.35% of the verified data, according to the definition of standard
box-plots. Then, they have no significant effects on the efficiency of the current results.

The ReErr of identified damage severity α̂MAP shown in Fig. 8.15 follows the same
trend, as in the case of ϑ̂MAP . It is noted from Fig. 8.15 (right) that the standard deviations
σα̂ are less scattered compared with similar cases of σϑ̂. Unlike the ϑ̂MAP , the ReErr of
identified damage severity α̂MAP is more sensitive to the level of noise than the damage
severity. It reaches a maximum value of 0.21 at a noise level of 0.08 (see Fig. 8.16), in
comparison with 0.12 at a damage severity of 0.25, as shown in Fig. 8.17. The effects of
ds on the ReErr of identified damage severity α̂MAP are similar to those of the ReErr of
identified damage severity ϑ̂MAP described previously, as shown in Fig. 8.18.

In conclusion, the FDI algorithm is able to identify the location ϑ̂ and the severity α̂
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Fig. 8.14. Box-plot of reconstructed error (ReErr) of the identified damage location ϑ̂, classified based on
the distances between sensors dsn: the MAP values ϑ̂MAP (left), the standard deviation σϑ̂ (right).

Fig. 8.15. Reconstructed error (ReErr) of the identified damage severity α̂ using frequency-based algorithm:
the MAP values α̂MAP (left), the standard deviation σα̂ (right).
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Fig. 8.16. Box-plot of reconstructed error (ReErr) of the identified damage location α̂, classified based on
noise level: the MAP values α̂MAP (left), the standard deviation σα̂ (right).
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Fig. 8.17. Box-plot of reconstructed error (ReErr) of the identified damage location α̂, classified based on
damage severity: the MAP values α̂MAP (left), the standard deviation σα̂ (right).
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Fig. 8.18. Box-plot of reconstructed error (ReErr) of the identified damage location α̂, classified based on
the distances between sensors dsn: the MAP values α̂MAP (left), the standard deviation σα̂ (right).

of the damage to an acceptable maximum error ReErr of 0.12 at a noise level of 0.05. It
should be kept in mind that the maximum values of the standard box-plots correspond to
a probability of 0.35% at the tails of the probability distribution of data. This means that
ϑ̂ is localized within a maximum error of 1150 mm, and α̂ is quantified with a maximum
offset of 0.12 from real damage severity.

8.5 Summary and Conclusion

In this chapter, the vibration-based status monitoring approach proposed in Section 4.2 is
implemented. The SM algorithm, the CDI algorithm, and the FDI algorithm are validated
and tested using the database recorded by the SHM system, the identified parameters of the
pole, and the results of SI. The proposed monitoring algorithm uses a logistic function for
classifying the status of the pole as either damaged, or un-damaged status. The algorithm is
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able to detect the damaged case for the damage severity efficiently above 30%. The proposed
CDI algorithm offers a higher probability to the points around the damage location, which
makes it a suitable prior for localizing the damage, even with a high noise level. The FDI
algorithm is applied using the artificial measurements derived from the finite element models
of the damaged poles. This algorithm is able to identify the location and the severity of the
damage efficiently in form of probability distributions, which quantifies the uncertainty of
the results. The algorithm identifies the damage to a maximum error of 0.12 at a high noise
level of 5%.

Consequently, the proposed approach and algorithms included here achieve the aim of
this research in creating a mechanism to trace the status of the poles and provide an alarm
when damage occurs. Moreover, it is possible to determine the location and severity of
damage efficiently with acceptable accuracy even in cases of high noise levels. The proposed
approach is characterized by ease, and rapid application, because the required inputs can
be derived using simple signal processing or even using SSI techniques for more informative
data. In addition, this approach is built based on the natural frequencies of the poles,
which can be retrieved using a fewer number of accelerometers in comparison with other
available approaches described in the literature. Furthermore, this approach utilizes the
benefit of data fusion in merging the informative data from multiple sources and methods
to increase the quality and accuracy of the expected results. Further, the proposed approach
is introduced in a stochastic UQ framework represented in the Bayesian inference, which
quantifies the uncertainty of results caused by different sources of data and methods that
are used in applying this approach.
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Chapter 9

Conclusions

9.1 Summary and Conclusion

The use of electrified transportation is increasing, particularly with global efforts to mitigate
greenhouse gas emissions that contribute to climate change and global warming. Questions
regarding the integrity of catenary poles (which carry the catenary system along the routes
of electrified transportation systems) still exist. Prestressed, spun-cast concrete poles are
good alternatives to the classic poles made from wood and steel, because they are cheaper,
have a longer operational life, and lower lifetime costs, making them more feasible.

This study contributes to verifying the characteristics of catenary poles that support the
electrification system along high-speed train tracks. Using a stochastic UQ framework, the
work utilizes the concept of data fusion for the optimal use of data derived from multiple
sources to verify the behavior of given poles. Mainly, three sources of data were used:
measurements of experiments conducted on full-scale poles, detailed numerical models, and
data recorded using the SHM system over a period of four years.

In this research, a vibration-based status monitoring approach that traces the status
of the pole over time was presented. This approach consisted of three algorithms: the
SM, the CDI, and the FDI. The proposed approach was characterized by ease and rapid
application, because the required inputs could be derived using simple signal processing,
or even using SSI techniques for more informative data. In addition, this approach was
developed based on the natural frequencies of the poles, which could be retrieved using fewer
accelerometers in comparison with other available approaches discussed in the literature.
The approach utilized the benefit of data fusion in merging the informative data from
multiple sources and methods to increase the quality and accuracy of the expected results.
Further, the proposed approach was introduced in a stochastic UQ framework, represented in
the Bayesian inference, which quantifies the uncertainty of results caused by different sources
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of data and methods that are used in applying this approach. Consequently, the proposed
approach and the algorithms included here achieved the aim of this research in creating
a mechanism to trace the status of the poles and provide an alarm when damage occurs.
Moreover, this approach identified the location and severity of damage with acceptable
accuracy, even in cases of high levels of noise.

The existing status of the poles was retrieved by analyzing the data recorded by the
SHM system installed on selected poles on-site. SI was made using signal processing and
SSI techniques. As a result, it is indicated that seasonal changes are the leading cause of
changing dynamic characteristics of the pole. Therefore, PDF values were built to describe
the fluctuation of the natural frequencies of the pole around a mean value during the specified
period of monitoring. Besides describing the behavior of the poles, these outcomes were
utilized to develop the status monitoring approach and the numerical simulation of the
damaged pole.

In the framework of the experimental program, three experiments were conducted on a
full-scale pole, as follows: the vibration test of the un-damaged pole, the 3-point bending
test, and the vibration test of the damaged pole. The measurements of the 3-point vibration
test and the vibration test of the un-damaged pole were analyzed and prepared to be used
in the PI process. The vibration test of the damaged pole verified the behavior of the pole in
a damaged case. The analysis of corresponding measurements provided useful information
to be used in developing the status monitoring approach. Furthermore, the details of the
numerical modeling techniques and the material constitutive models used in this study were
outlined. The numerical models were essential for PI and the simulation of the damaged
pole.

In the PI process, the Bayesian probabilistic approach was applied to identify the un-
known parameters of the given structure. First, the empirical Bayesian approach was imple-
mented through an all-in-one strategy (S1), where six parameters were inferred by utilizing
the FEM model and observations of the multiple experiments. To improve the quality of
inferred parameters, an adapted sequential Bayesian approach was proposed. This approach
was implemented through the sensitivity-based strategy (S2) by dividing the observations
into subsets based on the sensitivity of the parameters. Then, the Bayesian approach was
applied sequentially by considering the posterior of the current step as a priori to the sub-
sequent step. In both strategies, the TMCMC algorithm was used to sample from the
posterior. The results demonstrated considerable improvement in the quality of the inferred
parameters and confirmed the associations between the uncertainty and the sensitivity of
the parameters. Furthermore, considering the unknown total errors as hyperparameters re-
sulted in evaluating the total errors of the whole PI process. In the validation step, perfect
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agreement was achieved when using the mean values of the inferred parameters as inputs
for the numerical model to compare results to the experimental observations. In addition,
it was proven that the inferred properties of the concrete are in line with the recommended
values of Fib Model Code 2010 for the same compressive strength. The considerable devi-
ation between the inferred and nominal parameters draws attention to the importance of
the PI process before conducting any study on existing structures. This emphasized the
argument at the beginning of this chapter and laid the foundations for more appropriate
implementation of the subsequent phases of the study.

9.2 Future Works

Applying the proposed SM algorithm looks very promising when applied together with the
algorithms included here to other types of cantilever structures, such as the poles support
the power transmission lines, antenna masts, chimneys, and wind turbines. Moreover, this
approach can be developed to be valid for monitoring bridges. Furthermore, more efforts are
required to use the concept of data fusion for the optimal use of methods and data derived
from multiple sources in enhancing the outcomes of the PI and SHM. Bayesian inference is
the correct approach in this instance, despite its heavy computations. Different data can be
utilized, and at the same time, the uncertainty of different parameters can be considered.

A further improvement is needed to integrate the concept of parameter sensitivity in
the PI process, mainly when time-dependent measurements are utilized. It is proposed to
integrate the sensitivity analysis within the sampling algorithm (such as TMCMC in the
Bayesian approach) for further automation of the PI process.

It should be emphasized that it is necessary to apply DoE procedures before installing
any SHM system [188]. Efforts should be paid to define the goals behind installing SHM
systems, the expected outputs, and how much these findings are useful for the monitoring
process of the given structure later. It is recommended that pre-analysis of the structure
of interest (for example, using FEM) is conducted as a part of the DoE procedures. This
preliminary analysis is essential for exploring the behavior of the given structure, defining
sensitive parameters, and afterward designing an appropriate SHM system, such as types,
locations, and number of the sensors.

As a perspective for monitoring catenary poles used for electric train systems, the au-
thor suggests using fiber optic sensors (namely, Fiber Bragg Gratings (FBGs)) that can be
embedded in the concrete during the production of poles. The main benefit of FBG is that
it can be used as multi-sensors for measuring several physical parameters in the same fiber
at different locations along the pole; for example, strain and temperature [92, 85]. Besides,
FBGs are insensitive to external perturbations and electromagnetic interference [108]. To
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simplify data collection, each pole is provided with a Radio-frequency Identification (RFID)
sensor that stores the data temporally [189]. The stored data is wireless-transferred peri-
odically from the RFIDs to specific trains passing nearby the pole [190]. Then, the data is
collected from trains and stored in a database. Finally, the proposed monitoring algorithms
in this study can be implemented to verify the status of poles under monitoring.
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